

Abutment Retaining Wall Report I-275 Bridge over Elm Street Knox County, Tennessee S&ME Project No. 22430250 TDOT P.E. No. 47I275-F2-002 TDOT Pin No. 124437.00 Federal Project No. BR-I-275-3(136) S&ME Project No. 22430250

PREPARED FOR

HDR, Inc. 120 Brentwood Commons Way, Suite 525 Brentwood, Tennessee 37027

PREPARED BY:

S&ME, Inc. 1413 Topside Road <u>Knoxville,</u> TN 37777

June 9, 2023

June 9, 2023

HDR, Inc. 120 Brentwood Commons Way, Suite 525 Brentwood, Tennessee 37027

Attention: Stan King, PE, PLS

Reference: Report of Geotechnical Services I-275 – Bridge over Elm Street Abutment Retaining Walls Knox County, Tennessee TDOT P.E. No. 47I275-F2-002 TDOT Pin No. 124437.00 Federal Project No. BR-I-275-3(136) S&ME Proposal No. 22430250

Dear Mr. King

S&ME, Inc. (S&ME) has completed our evaluation of the abutment retaining walls for the I-275 Bridge over Elm Street in Knoxville, Tennessee. We performed the exploration in general accordance with S&ME Proposal No. 22430250 dated November 10, 2022, and the Geotech Subconsultant Agreement between our firms dated December 7, 2021.

This report presents our understanding of the project, documents our findings, and presents our recommendations for the above referenced retaining walls. S&ME, Inc. appreciates the opportunity to be of service to HDR, and we look forward to helping you through project completion. Please contact us if you have any questions.

Sincerely,

S&ME, Inc.

Joshua Baines, El Geotechnical Team Leader

jbaines@smeinc.com

Daniel R. Boles, PE Senior Engineer TN PE No. 103726

dboles@smeinc.com

Table of Contents

1.0	Executive Summary1					
2.0	Introduction1					
3.0	Geol	gy2	2			
4.0	Subs	urface Exploration Procedures	3			
5.0) Subsurface Conditions					
	5.1	Test Boring Summary	4			
	5.2	Groundwater				
6.0	Labo	atory Testing	5			
7.0	Engineering Analyses					
	7.1	Nominal Bearing Capacity	6			
	7.2	Sliding and Overturning	6			
	7.3	Global Stability	7			
		7.3.1 Methodology	7			
		7.3.2 Material Strength Parameters	7			
		7.3.3 Global Stability Results	7			
8.0	Reco	nmendations	3			
	8.1	8.1 Acceptable Wall Types				
	8.2	Other Design Requirements	8			
9.0	Limitations of Report9					

TDOT PIN No. 124437.00

Appendices

Appendix I	
Appendix II	Field Exploration Procedures Test Boring/Pit Record Legend Test Boring Records
	Rock Core Photos
Appendix III	Laboratory Test Procedures Laboratory Test Results
Appendix IV	Global Stability Analysis
Appendix V	Important Information about Your Geotechnical Engineering Report

TDOT PIN No. 124437.00

Retaining Wall Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

1.0 Executive Summary

S&ME, Inc. (S&ME) has completed our evaluation for the I-275 bridge over Elm Street in Knoxville Tennessee. This report includes a site assessment and recommendations specific to the abutment retaining walls. Please see our bridge report for recommendations regarding the bridge.

This summary is presented for the convenience of the reader. The full report text should be studied and understood before preparing an estimation of quantities or preparing designs based on this report, as it contains important information and recommendations that are not included in this brief summary.

The existing foundations for Bents 1 and 3 are planned to be used to support the new retaining wall dead, live, and longitudinal loads (braking and temperature). The existing foundations are a combination of shallow footings bearing on bedrock and driven concrete piles bearing on bedrock. Based on our review of the subsurface information, the provided bridge plans (existing and proposed), and project discussions, the planned loads on the existing foundations are less than or essentially the same as the original foundation design loads. Given the existing bridge foundations are performing adequately and the new design loads are essentially the same or less than the original design loads, we believe reuse of the existing bridge foundations is appropriate. Additionally, TDOT Structures Division has reviewed the existing foundations for reuse as part of the proposed foundation system and has advised that no further investigations are required.

New shallow foundations between the existing foundations for the project are assumed to only carry the precast cap and retaining wall or pier wall loads for the new bridge. Based on our review of the subsurface information collected for the bridge, and the provided bridge plans and loads, we recommend shallow foundation support for the new bridge abutment retaining walls and pier wall on the underlying hard residual silts and clays and very dense weathered rock (weathered shale); soils and weathered rock with SPT N-values of 30 bpf and greater. Any fill material needs to be excavated to get down to the hard residual soils. We anticipate the shallow foundations for the new wing walls will bear on firm to very stiff fill and residual soils.

2.0 Introduction

Initial project information was provided to us by Mr. Stan King, PE, PLS of HDR via phone and email correspondence with Mr. Jeff Doubrava, PE, of S&ME between June 28 and June 30, 2022. Mr. King provided us with a PDF document of notes from a scoping meeting held between HDR and TDOT on April 13, 2022. The notes contain an outline of the planned scope discussed during that meeting along with a site location plan and conceptual bridge plan and elevation drawings. Subsequently, in March and April 2023, Mr. Carter Bearden provided bridge layout sheets and foundations loadings.

We understand that the existing I-275 Bridge over Elm Street will be replaced. The existing bridge is approximately 180 feet long and 144 feet wide carrying 8 lanes of traffic along I-275 over Elm Street. The existing bridge is composed of four spans, each approximately 25, 42, 41, and 25 feet long respectively. The planned bridge will be the same width with only two spans. Each of the spans of the planned bridge will be approximately 42 feet in length for an overall bridge length of about 84 feet. The shortened overall length of the new bridge will be accomplished by bringing the bridge abutments closer to Elm Street. Maintaining the existing vertical clearance under I-75 is required.

The existing slopes adjacent to the existing abutments will be eliminated as the new abutments will be located along the existing Bridge Bents 1 and 3 adjacent to either side of Elm Street and new abutment retaining walls will

Retaining Wall Report TDOT P.E. No. 47I275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

be constructed. The existing foundations for Bents 1 and 3 will be maintained and incorporated into the new bridge abutments. The existing foundations are assumed to carry all the superstructure dead, live and wind loads. New shallow foundations between the existing foundations are assumed to only carry the precast cap and retaining wall loads. Longitudinal loads (braking and temperature) are assumed to be resisted by retaining walls through integral end bents. The foundations for existing Bent 1 are a combination of shallow spread footings and piles, while existing Bent 3 is supported on piles. The provided maximum service and strength bearing pressures for the new footings, as well as the maximum service and strength bearing pressures and loads on the existing footings and piles are included in Appendix I. The maximum service and strength bearing pressures for the new footings range from 2.78 to 3.25 and 3.47 to 4.06 kips per square foot (ksf), respectively.

We understand that the new foundations will be constructed while the existing bridge is still in service. The contractor will need to protect the existing bridge structure and foundations as well as provide shoring as needed.

3.0 Geology

The project site lies within the Appalachian Valley and Ridge Physiographic Province of East Tennessee. This Province is characterized by elongated, northeasterly-trending ridges formed on highly resistant sandstone and shale. Between ridges, broad valleys and rolling hills are formed primarily on less resistant limestone, dolomite, and shale.

Published geologic information indicates this site is underlain by bedrock of the Ottosee Shale formation of the Chickamauga Group. This formation is primarily composed of calcareous shale with minor amounts of coarsely crystalline, fossiliferous limestone (i.e. marble). The Ottosee Shale formation typically weathers to produce a tan or yellowish-brown clay residual soil with weathered shale fragments.

The boundary between soil and rock is not sharply defined in this geologic setting and there often is a transitional zone, termed "weathered rock" overlying competent bedrock. Weathering is facilitated by fractures, joints, and the presence of less resistant rock types. Consequently, the profile of the weathered rock and hard rock is quite irregular and erratic, even over short horizontal distances. Also, it is not unusual to find lenses and boulders of hard rock and/or zones of weathered rock within the soil mantle well above the general bedrock level.

Since the bedrock underlying this site contains carbonate rock (i.e. limestone/dolomite), it is susceptible to the hazards of irregular weathering, cave and cavern conditions, and overburden sinkholes. Carbonate rock, while appearing very hard and resistant, is soluble in slightly acidic water. This characteristic, plus differential weathering of the bedrock mass is responsible for these hazards. Of these hazards, the occurrence of sinkholes is potentially the most damaging to overlying soil-supported structures. Sinkholes occur primarily due to differential weathering of the bedrock and flushing or raveling of overburden soil into the cavities within the bedrock. This loss of solids creates a cavity, or dome, in the overburden. Growth of the cavity over time, or excavation over the dome, can create a condition in which rapid subsidence, or collapse, of the roof of the dome occurs.

A certain degree of risk with respect to sinkhole formation and subsidence should be considered with any site located within geologic areas underlain by potentially soluble rock units. While a rigorous effort to assess the potential for sinkhole formation on this site was beyond the scope of this evaluation, our borings did not encounter obvious indications of sinkhole development. In addition, we did not observe any surface signs of sinkhole activity at the site. However, some closed depressions, which denote past sinkhole activity, are shown on the United States Geological Survey (USGS) topographic map in the area of the site. It is our opinion the risk of sinkhole development at this site is comparable to other sites located within similar geologic settings which have

been developed successfully. However, the owner must be willing to accept the risk of future sinkhole development at this site.

4.0 Subsurface Exploration Procedures

The procedures used by S&ME, Inc. for field sampling and testing are in general accordance with ASTM procedures and established engineering practice in the State of Tennessee. Appendix II contains brief descriptions of the procedures used in this exploration.

S&ME, Inc. drilled 12 soil test borings for the project. The boring locations were requested based on assumed stations and offsets, as the alignment drawings for the new bridge were not yet available at the time of our exploration. Therefore, the boring locations were staked by members of our staff using approximate means, measuring distances and estimating right angles relative to onsite landmarks. Due to the approximate methods used to lay out the borings, the borings may not be located within the exact alignment of the structure. These borings are still close enough to provide relevant subsurface information.

A Diedrich-D50 drill rig with an automatic hammer was used to drill the borings. The borings were generally advanced from the ground surface with hollow-stem augering techniques coupled with Standard Penetration Testing (SPT) and split-spoon sampling. Rock coring was not performed in the abutment wing wall borings.

Undisturbed soil samples were collected for subsequent laboratory testing from selected borings. After each boring was completed, we measured the groundwater level, if present. The borings were backfilled with a borehole closure device and the auger cuttings.

The approximate boring locations are depicted on the abutment wall sheets in Appendix I. Our interpretation of the boring data obtained during our subsurface exploration is presented in the Test Boring Records and on Profile View on the abutment wall sheets. A summary of the boring locations is presented in Table 4-1.

Boring Number	SR-115 Station Number	Offset (feet)	Boring Ground Surface Elevation (feet)	Boring Depth (feet)
B-01	55+39	75 RT	902	50.1
B-02	55+04	75 RT	902	37.8
B-03	55+41	20 RT	902	32.8
B-04	55+05	12 RT	902	33.3
B-05	55+40	22 LT	903	39.8
B-06	55+06	22 LT	903	39.6
B-07	55+39	75 LT	904	49.5
B-08	55+04	76 LT	904	39.7
B-09	55+93	65 RT	922	30
B-10	54+38	63 RT	921	30
B-11	56+01	65 LT	922	40
B-12	54+41	64 LT	921	30

Table 4-1 Locations of Retaining Wall Borings

5.0 Subsurface Conditions

5.1 Test Boring Summary

The subsurface conditions encountered in the test borings are briefly summarized in Table 5-1. For a full description of the subsurface conditions along with the results of our moisture content and index property laboratory testing, please refer to the Test Boring Records in Appendix II.

Boring Number Station, Offset	Ground Surface Elevation, Boring Depth	Soil Origin	General Soil Description	SPT N - Value Range or Rock REC/RQD Range	Surface Material	
B-01		FILL: 1.2 ft to 3 ft	СН	8	Asphalt,	
I-275 Sta. 55+39, 75 RT	EL. 902 ft 50.1 ft	RESIDUUM: 3 ft to 21.4 ft	SC, WR	100+	4 in Aggregate Base, 10	
KI		ROCK: 21.4 ft to 50.1 ft	Calcareous Shale	94 - 100/68 - 96	in	
В-02		FILL: 1.5 ft to 3 ft	СН	12	Asphalt,	
I-275 Sta. 55+04,	EL. 902 ft 37.8 ft	RESIDUUM: 3 ft to 7.6 ft	WR	100+	7 in Aggregate Base, 11	
75 RT		ROCK: 7.6 ft to 37.8 ft	Calcareous Shale	92 -100, 40 - 95	in	
B 02		FILL: 0.9 ft to 1.5 ft	СН	14		
B-03 I-275 Sta. 55+41, 20	EL. 902 ft 32.8 ft	RESIDUUM: 1.5 ft to 13.7 ft	ML, WR	30 - 100+	Concrete, 11 in	
RT		ROCK: 13.7 ft to 32.8 ft	Calcareous Shale	82 - 100, 64 - 100		
5.04	EL. 902 ft 33.3 ft	FILL: 0.9 ft to 5.5 ft	СН	4 – 8		
B-04 I-275 Sta. 55+05, 12			RESIDUUM: 5.5 ft to 15.4 ft	ML, WR	26 - 100+	Concrete, 11 in
RT		ROCK: 15.4 ft to 33.3 ft	Calcareous Shale	100, 70 - 100		
B-05		FILL: 0.9 ft to 4 ft	СН	5		
I-275 Sta. 55+40	EL. 903 ft 39.8 ft	RESIDUUM: 4 ft to 14.4 ft	ML, WR	61-100+	Concrete, 11 in	
22 LT		ROCK: 14.4 ft to 39.8 ft	Calcareous Shale	75 – 100, 0 – 96		
B-06		FILL: 0.9 ft to 4 ft	СН	13		
I-275 Sta. 55+06	EL. 903 ft 39.6 ft	RESIDUUM: 4 ft to 17.6 ft	WR	22 - 100+	Concrete, 11 in	
22 LT		ROCK: 17.6 feet to 39.6 ft	Calcareous Shale	90 - 100, 40 - 100		
B-07		FILL: 1 ft to 3 ft	СН	9	Concrete,	
I-275 Sta. 55+39	EL. 904 ft 49.5 ft	RESIDUUM: 3 ft to 24.4 ft	WR	100+	10 in Aggregate Base,	
75 LT		ROCK: 24.4 ft to 49.5 ft	Calcareous Shale	88 - 100, 60 - 100	2 in	

Table 5-1 Summary of Test Borings Drilled for Retaining Walls

Retaining Wall Report

TDOT P.E. No. 47I275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

Boring Number Station, Offset	Ground Surface Elevation, Boring Depth	Soil Origin	General Soil Description	SPT N - Value Range or Rock REC/RQD Range	Surface Material			
B-08		FILL: 1.3 ft to 3 ft	СН	7	Concrete,			
I-275 Sta. 55+04	EL. 904 ft 39.7 ft	RESIDUUM: 3 ft to 12.3 ft	CH, WR	51 - 100+	10 in Aggregate Base,			
76 LT		ROCK 12.3 ft to 39.7 ft	Calcareous Shale	90 - 100, 62 - 90	6 in			
B-09	EL. 922 ft	FILL: 1.9 ft to 8 ft	СН	5 - 8	Asphalt, 8 in Concrete, 8 in			
Sta. 55+93, 65 RT	30 ft	30 ft	30 ft	30 ft	RESIDUUM: 8 ft to 30 ft	CH, ML	8-21	Aggregate Base, 7 in
B-10	EL. 921 ft 30 ft	EL. 921 ft	FILL: 2 ft to 17.5 ft	GP, CL, CH	4 - 44	Asphalt 20 in		
Sta. 54+38, 63 RT		RESIDUUM: 17.5 ft to 30 ft	СН	10 - 16	Aggregate Base 4 in			
B-11	EL. 922 ft .T 40 ft	FILL: 1.2 ft to 5.5 ft	СН	6 - 28	Asphalt 1 in Concrete 8 in			
Sta. 56+01, 65 LT		40 ft	RESIDUUM: 5.5 ft to 40 ft	CH, CL	2 – 20	Aggregate Base 6 in		
B-12	EL. 921 ft	FILL: 1.5 ft to 17 ft	СН	3 - 6	Asphalt 16 in			
Sta. 54+41, 64 LT	30 ft	RESIDUUM: 17 ft to 30 ft	СН	14 – 19	Aggregate Base 2 in			

5.2 Groundwater

Groundwater was encountered in test boring B-11 at the time of drilling at a depth of 29 feet beneath the existing ground surface (approximately elevation 893 feet). Groundwater was not encountered in the remaining borings at the time of drilling. It should be noted that groundwater levels can fluctuate with seasonal, climatic, and environmental changes. Therefore, groundwater may be encountered at different depths at some future time.

6.0 Laboratory Testing

Laboratory tests were performed on representative samples obtained during the field exploration phase of this project. We conducted moisture content, Atterberg limits, and grain size analysis on selected samples to aid our soil classification and to aid in determining soil strength parameters. The resulting soil descriptions are shown on the Test Boring Records in Appendix II.

In addition to the index property testing performed on split spoon samples, unconsolidated undrained triaxial compression testing and one dimensional consolidation testing was performed on undisturbed Shelby tube samples obtained during the field exploration. The laboratory test results and a brief description of the laboratory test procedures are presented in Appendix III.

7.0 Engineering Analyses

Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

Retaining Wall Report TDOT P.E. No. 471275-F2-002

Bearing capacity, sliding, global stability and settlement analyses of the proposed retaining walls were performed. The results of our analyses are included in Appendix IV. A discussion of the analyses methods and results is presented in the following paragraphs.

7.1 Nominal Bearing Capacity

We performed an evaluation of the nominal bearing capacity of the subsurface material supporting the abutment walls. The analyses were performed using LRFD criteria for a cast in place (CIP) cantilever wall. The results of the analysis indicate a nominal bearing capacity of 11.5 kips per square foot (ksf) for the CIP cantilever walls bearing on hard residual soils and weathered rock with SPT N-values of 30 bpf and greater and a nominal bearing capacity of 8.5 ksf for the CIP wing walls bearing on stiff fill and residual soils. Since the foundations will be supported on hard residual soils and very dense weathered rock with SPT N-values of 30 bpf and greater, settlement should not be a significant concern. We expect excavation depths for shallow foundations in the general vicinity of our borings will be near the respective top of the hard soils and very dense weathered rock residuum elevations encountered in the borings as shown in Table 7-1.

Boring	Approximate Ground Surface Elevation (feet)	Depth to Very Dense Weathered Rock Residuum (feet)	Elevation of Top of Very Dense Weathered Rock Residuum (feet)
B-01	902	3	899
B-02	902	3	899
B-03	902	3.5	898.5
B-04	902	8	894
B-05	903	4	899
B-06	903	4	899
B-07	904	3	901
B-08	904	4.5	899.5

Table 7-1 Depths and Elevations to 30+ bpf Residual Soils and Weathered Rock

7.2 Sliding and Overturning

With light weight concrete used as the wall backfill once the concrete backfill sets the sliding and overturning should not be an issue as the concrete should not exert any lateral pressure on the wall. However, during construction the pressures from the fluid light weight concrete backfill will need to be considered. This is discussed further subsequently in the Recommendations Section of this report.

7.3 Global Stability

7.3.1 *Methodology*

The cross-sections were evaluated based on the existing slope geometry, the subsurface data and estimated retaining wall design parameters based on the laboratory testing and our experience in the geologic setting. Stability of the selected cross-sections was assessed using a two-dimensional limit equilibrium modeling technique which simplifies the failure or "slip" surfaces by dividing the slope into vertical "slices" and fitting line segments or arcs of various radii and centers, or plane slip surfaces, to the slope. Various surfaces are then checked to determine the slip surface with the smallest ratio of resisting forces (soil strength and pile shear resistance) to driving forces (mass of the soil and water and traffic loading). The computer program SLIDE 2 (2021) was used to perform the analyses. We used the Spencer method to evaluate the stability of the cross-sections analyzed.

7.3.2 Material Strength Parameters

The test boring data and the laboratory test data from the project were reviewed and the subsurface boundary conditions developed for the selected cross-sections. Table 7-1 presents the material properties used in our analyses. In accordance with AASHTO guidelines, the global stability of the selected cross sections was analyzed for drained (effective stress) and undrained (total stress).

	Unit	Effectiv	ve Stress	Total Stress	
Material Type	Weight, γ (pcf)	Cohesion, C' (psf)	Friction Angle, Φ' (degrees)	Cohesion, C (psf)	Friction Angle, Φ (degrees)
Fill	120	100	26	1000	0
Residuum	120	100	28	1500	0
Weathered Shale	130	0	35	2000	0
Lightweight Cellular Concrete	35	10,000	0	10,000	0

Table 7-2: Material Strength Parameters

7.3.3 *Global Stability Results*

The results of our global stability analyses are summarized in Table 7-3. The factors of safety are determined as the ratio of the summation of the resisting forces divided by the driving forces acting on the most critical failure surface as determined by SLIDE 2018.

I-275 Station	Estimated Factor of Safety (Spencer Method)
54+72.41 – Effective Stress	1.8
54+72.41 – Total Stress	3.1
55+56.41 – Effective Stress	1.9
55+56.41 – Total Stress	2.7

Table 7-3: Slope Stability Analyses Results

Based on the AASHTO LRFD Bridge Design Manual, 9th Edition, Section C11.6.2.3, the selection of the resistance factor for use in overall stability should take into account the presence of infrastructure that would be impacted by a wall failure. For cases where walls support critical infrastructure, the resistance factor of 0.65 should be used (FOS ~ 1.5). Otherwise, a resistance factor of 0.75 may be used (FOS ~ 1.3).

8.0 **Recommendations**

8.1 Acceptable Wall Types

The retaining wall shall be a cast-in-place concrete cantilever wall.

8.2 Other Design Requirements

For level ground surfaces in front of the wall (Elm Street), a minimum top of foundation embedment depth of 2 feet below the proposed ground surface at the front face of the wall will be required to satisfy FHWA minimum wall embedment depth requirements and for global stability.

Once the lightweight cellular concrete backfill sets, sliding should not be an issue as the concrete will not exert any lateral pressure on the wall. However, during construction the pressures from the fluid light weight concrete backfill will need to be considered. The following options may be considered:

- The wall can be designed to resist the full fluid pressure of the light weight concrete backfill;
- The wall can be braced during construction to resist the temporary concrete fluid pressure;
- The concrete backfill could be placed in lifts to reduce temporary fluid pressures on the walls.

Additionally, in preparation for placing the light weight concrete wall backfill, we recommend the existing abutment slopes be benched to eliminate the potential sloping slip surface between the concrete backfill and existing abutment slope. The concrete backfill should bear on generally level surfaces.

The wall designer must provide for a drainage layer behind the wall with adequate drainage provided via vertical drains and weep holes.

TDOT PIN No. 124437.00

Retaining Wall Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

9.0 Limitations of Report

This report has been prepared for the exclusive use of the Tennessee Department of Transportation and their designers for specific application to the project referenced in this report. Our conclusions and recommendations have been prepared using generally accepted standards of geotechnical engineering practice in the State of Tennessee. No other warranty is expressed or implied. S&ME, Inc. is not responsible for the conclusions, opinions, or recommendations of others based on this data.

Because of the proportionately large influence that minor strata changes and fill composition can have on slope stability, it is difficult to assess the stability of existing slopes based on drilling and laboratory test data. Conventional drilling and sampling may not disclose the presence of thin soft seams or the orientation of joints and bedding that can significantly impact the stability of existing slopes. Further, groundwater can have a significant effect on the long term performance of a slope. Given these unknowns, it is necessary to point out that there is an element of risk associated with the evaluation of slopes. Even though our analyses reflect the use of standard practices combined with prudent judgment, long-term performance is not completely certain.

Our conclusions and recommendations are based on the design information furnished to us, the data obtained during the geotechnical exploration, the laboratory test results, and our past experience. They do not reflect variations in the subsurface conditions that are likely to exist between our borings and in unexplored areas of the site due to the inherent variability of the subsurface conditions in this geologic region and past land use. If such variations are found during construction, re-evaluating our conclusions and recommendations will be necessary.

If changes are made in the location or elevation of the planned retaining wall, the recommendations contained in this report will not be considered valid unless our firm has reviewed the changes and modified or verified our recommendations in writing. You should give us the opportunity to review the final design plans and the applicable portions of the project specifications when the designers complete the design. This review will allow us to check whether these documents are consistent with the intent of our recommendations.

For more information on the use and limitations of this report, please read the ASFE document included in Appendix V.

Appendices

Appendix I

Retaining Wall Sheets

ACCEPTABLE WALL TYPE

CAST-IN-PLACE CANTILEVER WALL

THE RETAINING WALL(S) SHALL BE ONE OF THE WALL TYPE(S) AS LISTED ABOVE OR ON FORTHCOMING "RETAINING WALL DETAIL-GEOMETRIC LAYOUT" SHEET(S). ANY PROPRIETARY RETAINING WALL SYSTEM SHALL BE LISTED AS PRE-APPROVED IN OPL 38.

RETAINING WALL DESIGN NOTES

UNLESS SPECIFICALLY STATED OTHERWISE IN THE CONTRACT PLANS, THE BIDDING FOR, THE DESIGN OF AND THE CONSTRUCTION OF RETAINING WALLS SHOWN IN THE PLANS SHALL BE GOVERNED BY THE TENNESSEE DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION 624 REGARDING RETAINING WALLS. THIS SPECIAL PROVISION SHALL BE CONSIDERED AS ONE OF THOSE DOCUMENTS WHICH THE BIDDER/CONTRACTOR HAS EXAMINED AND MADE HIMSELF FAMILIAR WITH AS DESCRIBED IN SECTION 102.04 - EXAMINATION OF THE SITE, THE WORK, THE PLANS, AND THE SPECIFICATIONS IN THE TDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION.

EXCAVATION FOR THE WALL AND/OR ITS FOOTING SHALL NOT BE ACCOMPLISHED UNTIL THE CONTRACTOR HAS SUBMITTED WALL DESIGNS AND CALCULATIONS AND HAS BEEN ISSUED AN APPROVED SET OF WALL PLANS AND HAS LABOR AND MATERIAL RESOURCES AVAILABLE TO BEGIN AND CONTINUE WALL CONSTRUCTION IMMEDIATELY AFTER EXCAVATION.

THIS WALL SHALL BE DESIGNED IN ACCORDANCE WITH LRFD DESIGN PROCEDURES AND REQUIREMENTS AS DESCRIBED IN:

- AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 2020

FOR PROPRIETARY WALL SYSTEMS THAT HAVE BEEN APPROVED AS SHOWN IN QPL 38, THE WALL DESIGNER SHALL BE RESPONSIBLE FOR PROVIDING WALL DESIGNS INCORPORATING MATERIALS AND COMPONENTS (I.E. REINFORCEMENT CONNECTION DEVICES, SPECIFIC MANUFACTURER AND PROPERTIES OF GEOGRID) AS WAS ORIGINALLY SUBMITTED AND APPROVED BY TDOT, IF A MATERIAL AND/OR COMPONENT OF THE WALL SYSTEM HAVE BEEN MODIFIED FROM THE ORIGINALLY APPROVED SYSTEM, A WALL DESIGN AND SET OF PLANS AND CALCULATIONS FOR THIS WALL SYSTEM CANNOT BE SUBMITTED FOR REVIEW AND APPROVAL UNTIL THE WALL SYSTEM DESIGNER WHO ORIGINALLY SUBMITTED THE WALL SYSTEM FOR APPROVAL BY TDOT SUBMITS A REQUEST FOR RE-APPROVAL UTILIZING THE MODIFIED ELEMENTS OF THE WALL. THIS SUBMITTAL DOES NOT GUARANTEE APPROVAL OF THE MODIFIED SYSTEM. IF THIS RE-APPROVAL PROCESS DOES NOT MEET THE CONTRACTOR'S SCHEDULE OR IF THE MODIFIED SYSTEM IS NOT APPROVED, THE CONTRACTOR/WALL DESIGNER SHALL PROVIDE A WALL DESIGN FOR ONE OF THE APPROVED SYSTEMS AT NO CHANGE IN CONTRACT PRICE FOR THE RETAINING WALL AND NO CHANGE IN PROJECT SCHEDULE REQUIREMENTS WILL BE ALLOWED.

THE WALL DESIGNER SHALL PROVIDE RETAINING WALL PLANS, DETAILS AND CALCULATIONS AS REQUIRED BY SPECIAL PROVISION 624 AND AS REQUIRED HEREIN.

- THE WALL DESIGNER SHALL UTILIZE THE GEOTECHNICAL PARAMETERS AND RESISTANCE FACTORS AS PROVIDED FOR EACH PROJECT RETAINING WALL ON THE "RETAINING WALL DETAIL" SHEET(S) TO PREPARE AND SUBMIT DESIGN CALCULATIONS. LOAD FACTORS AND OTHER PERTINENT DESIGN REQUIREMENTS PROVIDED IN AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 2020 AND INTERIMS SHALL BE USED FOR NON-MSE WALLS
- CALCULATIONS FOR BOTH INTERNAL AND EXTERNAL STABILITY (SLIDING, ECCENTRICITY, AND BEARING CAPACITY-GLOBAL STABILITY AND SETTLEMENT BEING THE EXCEPTIONS) SHALL BE PROVIDED FOR EACH CRITICAL WALL SECTION WHICH DEMONSTRATES THE REQUIRED CAPACITY TO DEMAND RATIO OF 1.0 IS MET UTILIZING THE DESIGN PARAMETERS PROVIDED. FOR MSE WALLS, THE WALL DESIGNER MUST ADJUST THE REINFORCEMENT LENGTHS BEYOND THOSE MINIMUM REQUIRED LENGTHS, IF REQUIRED, TO MEET BOTH INTERNAL AND EXTERNAL REQUIREMENTS. THE WALL DESIGNER/CONTRACTOR PLANS MUST INCLUDE ANY FOUNDATION IMPROVEMENTS AS REQUIRED HEREIN ON THE WALL DESIGNER/CONTRACTOR'S WALL ELEVATION VIEWS AND ANY CROSS-SECTIONAL DETAIL DRAWINGS.
- UNLESS OTHERWISE STATED, THE WALL DESIGNER CAN ASSUME THAT MINIMUM GLOBAL STABILITY AND SETTLEMENT CRITERIA IS ACHIEVED WITH A WALL DESIGN MEETING OTHER MINIMUM EXTERNAL STABILITY REQUIREMENTS AND ASSUMING WALL FOUNDATION BEARING IMPROVEMENTS ARE MET. WHILE THE WALL DESIGNER'S DESIGN MUST DEMONSTRATE COMPLIANCE WITH EXTERNAL STABILITY REQUIREMENTS AS DISCUSSED ABOVE, THE WALL DESIGNER PROVIDES CERTIFICATION (BY SIGNING AND STAMPING BY PROFESSIONAL ENGINEER REGISTERED IN STATE OF TENNESSEE) OF THE WALLS, PLANS, AND CALCULATIONS "FOR INTERNAL STABILITY ONLY".
- LOAD COMBINATIONS STRENGTH I, EXTREME EVENT I, AND EXTREME EVENT II SHALL BE EVALUATED AS GIVEN IN AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 2020 AND INTERIMS.

NOTE REGARDING CONSTRUCTION SLOPES

124437.00

THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAKING THE EXCAVATION IN ACCORDANCE WITH OSHA AND OTHER APPLICABLE STATE AND LOCAL REGULATIONS REGARDING CONSTRUCTION SLOPES AND TRENCHES. IN ADDITION TO FOLLOWING APPLICABLE REGULATORY REQUIREMENTS, AS A MINIMUM REQUIREMENT, ALL TEMPORARY CONSTRUCTION SLOPES SHALL BE PLACED AT A MAXIMUM OF A 1:1 SLOPE IN SOIL AND SHALL NOT BE LEFT OPEN WITHOUT SHORING FOR ANY LONGER THAN ABSOLUTELY NECESSARY. THE CONTRACTOR BUILDING THE WALL SHALL ENSURE THAT THESE TEMPORARY BACK SLOPES ARE NOT AND DO NOT BECOME UNSTABLE. IF SLOPE IS UNSTABLE, BECOMES UNSTABLE, IS CUT STEEPER THAN A 1:1 SLOPE OR IS UNACCEPTABLE FOR ANOTHER REASON, THEN TEMPORARY SHORING SHALL BE USED. ANY UNUSUAL SOIL CONDITIONS OTHER THAN THOSE ASSUMED SHOULD BE REPORTED TO THE PROJECT ENGINEER.

PIN NO.:___

DESIGN LIF SEISMIC AC

RETAINED E OR BORROW RETAINED (LIGHTWEIGH

-GRID RE TENSILE RE

NO.

1 A 2B 4

TABLE 1-DESIG	GN REQUIREMENTS AND	PARAMETE				
DESCRIPTION	CIP WALLS	NOTE				
DESIGN LIFE	75 YEARS					
SEISMIC ACCELERATION COEFFICIENTS						
As	*					
S _{DS}	×					
S _{D1}	*					
EFFECTIVE (DRAINED) FRICTION ANGLE						
RETAINED BACKFILL-UNCLASSIFIED SITE OR BORROW SOIL	28 ⁰					
RETAINED BACKFILL-SELECT BACKFILL	34 ^o to max 40 ^o	1				
LIGHTWEIGHT CELLULAR CONCRETE	NOT APPLICABLE	1				
UNIT WEIGHT	I					
LIGHTWEIGHT CELLULAR CONCRETE	35 POUNDS PER CUBIC FOOT					
SELECT BACKFILL MATERIAL	VARIES	1 A				
DESIGN BASIS						
COEFFICIENT OF SLIDING FRICTION	SEE TABLE 3	3				
NOMINAL BEARING RESISTANCE	SEE TABLE 3	3				
MINIMUM LENGTH OF SOIL REINFORCEMENT, L	NOT APPLICABLE	2,2A,2B				
LIMITING ECCENTRICITY	B/3 (SOIL), 9B/20 (ROCK)					
RESISTANCE FACTORS						
SLIDING-STATIC	1.0	4				
SLIDING-COMBINED STATIC+EARTHQUAKE	1.0	4				
BEARING-STATIC	0.55	5				
BEARING-COMBINED STATIC+EARTHQUAKE	0.8	5				
PULLOUT RESISTANCE OF METALLIC REINFORCE	MENT					
STATIC -STEEL STRIP REINFORCEMENTS -STEEL GRID REINFORCEMENTS	NOT APPLICABLE	6				
COMBINED STATIC/EARTHQUAKE -STEEL STRIP REINFORCEMENTS -STEEL GRID REINFORCEMENTS	NOT APPLICABLE	6				
PULLOUT RESISTANCE OF GEOSYNTHETIC REINF	ORCEMENT	<u> </u>				
STATIC -GEOTEXTILES AND GEOGRIDS -GEOSTRIP REINFORCEMENTS	NOT APPLICABLE	6				
COMBINED STATIC/EARTHQUAKE -GEOTEXTILES AND GEOGRIDS -GEOSTRIP REINFORCEMENTS	NOT APPLICABLE	6				
TENSILE RESISTANCE OF METALLIC REINFORCEMENTS AND CONNECTORS						
STATIC -STRIP REINFORCEMENT -GRID REINFORCEMENT	NOT APPLICABLE	7				
COMBINED STATIC/EARTHQUAKE -STRIP REINFORCEMENT -GRID REINFORCEMENT	NOT APPLICABLE	7,8				
TENSILE RESISTANCE OF GEOSYNTHETIC REINF	ARCEMENTS AND CONNECTORS	Г , О				
STATIC -GEOTEXTILE AND GEOGRID REINFORCEMENTS						
-GEOSTRIP REINFORCEMENTS COMBINED STATIC/EARTHQUAKE -GEOTEXTILE AND GEOGRID REINFORCEMENTS						
-GEOSTRIP REINFORCEMENTS	NOT ATTLICADLE					

NOTES FOR TABLE 1

NOTE

A MAXIMUM FRICTION ANGLE OF 34 DEGREES CAN BE ASSUMED FOR MATERIAL MEETING SPECIFICATIONS IN SECTION F, PART 1. MATERIALS OF TENNESSEE DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION 624 REGARDING RETAINING WALLS. A HIGHER FRICTION ANGLE THAN 34 DEGREES CAN BE UTILIZED IF THE CONTRACTOR SUBMITS INDEPENDENT TESTING AND IT IS VERIFIED BY TDOT. HOWEVER, IN NO CASE SHALL THE FRICTION ANGLE FOR ANALYSIS EXCEED 40-DEGREES. INDEPENDENT TESTING MUST BE VERIFIED ANNUALLY. SELECT BACKFILL UNIT WEIGHT TO BE DETERMINED BY CONTRACTOR/DESIGNER DEPENDING ON ACTUAL BACKFILL MATERIAL USED. SELECT BACKFILL IS DEFINED AS MATERIAL MEETING SPECIFICATIONS IN SECTION F, PART 1. MATERIALS OF TENNESSEE DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION 624 REGARDING RETAINING WALLS. IN ORDER TO UTILIZE Φ FOR SELECT BACKFILL DESIGN, SELECT BACKFILL MUST BE PLACED FOR A MINIMUM ZONE FORMED BY A 1:1 SLOPE FROM 2 FEET BEHIND THE BOTTOM OF BACK OF WALL FOOTING OR REINFORCED SOIL ZONE FOR MSE WALLS UP TO FINISHED GRADE.

H IS DESIGN HEIGHT OF THE WALL AND IS DEFINED AS THE DIFFERENCE IN ELEVATION BETWEEN THE FINISHED GRADE AT THE TOP OF THE WALL AND THE TOP OF LEVELING PAD OR BOTTOM OF FOOTING FOR NON-MSE WALLS. THE TOP OF THE LEVELING PAD SHALL ALWAYS BE BELOW THE MINIMUM EMBEDMENT REFERENCE LINE AS INDICATED ON THE PLANS FOR THAT LOCATION. THE LENGTH OF THE SOIL REINFORCEMENT, L, IS MEASURED FROM THE BACKFACE OF THE WALL FACING UNIT. IN CASE OF GRID TYPE REINFORCEMENTS THE LENGTH OF THE SOIL REINFORCEMENT IS MEASURED FROM THE BACKFACE OF THE WALL FACING UNIT TO THE LAST FULL TRANSVERSE MEMBER. FOR MODULAR BLOCKFACING UNITS, THE TOTAL LENGTH OF THE REINFORCEMENT, Br AS MEASURED FROM THE FRONT FACE OF THE WALL IS THE LENGTH L AS DEFINED ABOVE PLUS THE WIDTH OF THE MODULAR BLOCK UNIT (THE HORIZONTAL DIMENSION OF THE BLOCK UNIT MEASURED PERPENDICULAR TO THE WALL FACE).

WALL DESIGNER MUST ADJUST THE REINFORCEMENT LENGTHS BEYOND THOSE MINIMUM REQUIRED LENGTHS, IF REQUIRED, TO MEET BOTH INTERNAL AND EXTERNAL STABILITY REQUIREMENTS. MINIMUM REINFORCEMENT LENGTHS MAY BE REQUIRED FOR GLOBAL STABILITY. THIS REQUIREMENT WILL BE SHOWN IN THE PLANS.

ALL DESIGN SECTION REINFORCEMENT LENGTHS SHALL BE EQUAL.

THESE VALUES WILL BE PROVIDED IN TABLES 2 AND/OR 3

PASSIVE RESISTANCE SHALL NOT BE CONSIDERED IN EVALUATION OF SLIDING RESISTANCE. NO SHEAR KEYS NOR DOWELS WILL BE PERMITTED. FOR CAST-IN-PLACE CONCRETE CANTILEVER WALLS, THE FOOTING SHALL BE UNIFORM IN THICKNESS THROUGHOUT THE DESIGN SECTION.

FOR ALL LIMIT STATES, THE DESIGN LOADING FOR THE RETAINING WALL SYSTEM SHALL NOT EXCEED THE FACTORED BEARING RESISTANCE, WHICH IS THE PRODUCT OF THE NOMINAL BEARING RESISTANCE SPECIFIED IN TABLES 2 AND/OR 3 AND THE APPROPRIATE RESISTANCE FACTOR.

LIVE LOAD DUE TO VEHICULAR TRAFFIC SHALL BE INCLUDED IN THE COMPUTATIONS TO DETERMINE THE MAXIMUM TENSILE FORCES IN REINFORCEMENT LAYERS, BUT SHALL BE NEGLECTED IN THE COMPUTATIONS FOR PULLOUT RESISTANCE.

APPLY TO GROSS CROSS-SECTION LESS SACRIFICIAL AREA. FOR SECTIONS WITH HOLES, REDUCE GROSS AREA IN ACCORDANCE WITH ARTICLE 6.8.3 OF AASHTO (2020) AND APPLY TO NET SECTION LESS SACRIFICIAL AREA.

APPLIES TO GRID REINFORCEMENTS CONNECTED TO A RIGID FACING ELEMENT, E.G., A CONCRETE PANEL OR BLOCK. FOR GRID REINFORCEMENTS CONNECTED TO A FLEXIBLE FACING MAT OR WHICH ARE CONTINUOUS WITH THE FACING MAT, USE THE RESISTANCE FACTOR FOR STRIP REINFORCEMENTS.

	THIS BOX IS TO BE REMOVED AFT VALUES, REVISES THE ACCEPTABL REQUIREMENTS, AND INSERTS THE
	<u>SEISMIC</u> Wall Design is to include ext Structures division will prov Values (As, SDS, AND SD1) f
* *	WALL FASCIA REQUIREMENTS THE ACCEPTABLE WALL TYPES LIS ONLY. AESTHETIC REQUIREMENTS ACCEPTABLE WALL TYPES. FASCIA TDOT STRUCTURES DIVISION.
	DEFLECTION TDOT STRUCTURES DIVISION SHAL DEFLECTION OF PILE SUPPORTED INSERT THE REQUIREMENT IN THE

TABLE 2- NO MSE WALLS ARE ACCEPTABLE FOR THIS SITE

TABLE 3-FOUNDATION PARAMETERS AND REQUIREMENTS FOR GRAVITY OR SEMI-GRAVITY WALLS

STATION LIMITS	FOUNDATION BEARING CONDITION REQUIREMENT	NOMINAL BEARING RESISTANCE (psf)	COEFFICIENT OF SLIDING FRICTION
54+72.41 AND 55+56.41 (CANTILEVER WALLS)	HARD RESIDUAL SOILS AND WEATHERED ROCK WITH SPT N-VALUES OF 30 BPF AND GREATER	11,500	0.65
54+45 TO 54+72.41 AND 55+56.41 TO 55+84 (WING WALLS)	STIFF FILL AND RESIDUAL SOILS	8,500	0.65

OTHER DESIGN REQUIREMENTS

THE WALL DESIGNER MUST PROVIDE FOR A DRAINAGE LAYER BEHIND THE WALL STEM WITH ADEQUATE DRAINAGE PROVIDED VIA WEEP HOLES.

ALL WALL ELEMENTS SHALL BE WITHIN TDOT ROW.

ALL CONSTRUCTION MUST STAY WITHIN TDOT ROW, SLOPE EASEMENT, AND CONSTRUCTION EASEMENT.

THE CONTRACTOR SHALL COORDINATE AND PERFORM ALL UTILITY RELOCATION SO THAT IT DOES NOT INTERFERE WITH THE RETAINING WALL INSTALLATION.

THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING AND PRESERVING THE INTEGRITY AND FUNCTION OF THE ROADWAY DURING CONSTRUCTION AND THROUGHOUT THE DESIGN LIFE OF THE WALL.

FOUNDATION SUBGRADE OBSERVATIONS SHOULD BE PERFORMED BY THE GEOTECHNICAL ENGINEER, OR THEIR DESIGNATE, IN ORDER TO CONFIRM THE RECOMMENDATIONS PROVIDED IN THIS REPORT ARE CONSISTENT WITH THE SIGHT CONDITIONS ENCOUNTERED.

NEW FOUNDATIONS SHALL BE CONNECTED TO THE EXISTING FOUNDATIONS AND PILE CAPS AS SHOWN ON THE PLANS.

LIGHT WEIGHT CELLULAR CONCRETE SHALL BE USED FOR WALL BACKFILL. THE WALL SHALL BE BRACED DURING CONSTRUCTION TO RESIST THE TEMPORARY CONCRETE FLUID PRESSURE. THE LIGHT WEIGHT CELLULAR CONCRETE MAY BE PLACED IN LIFTS TO REDUCE THE TEMPORARY FLUID PRESSURES ON THE WALL.

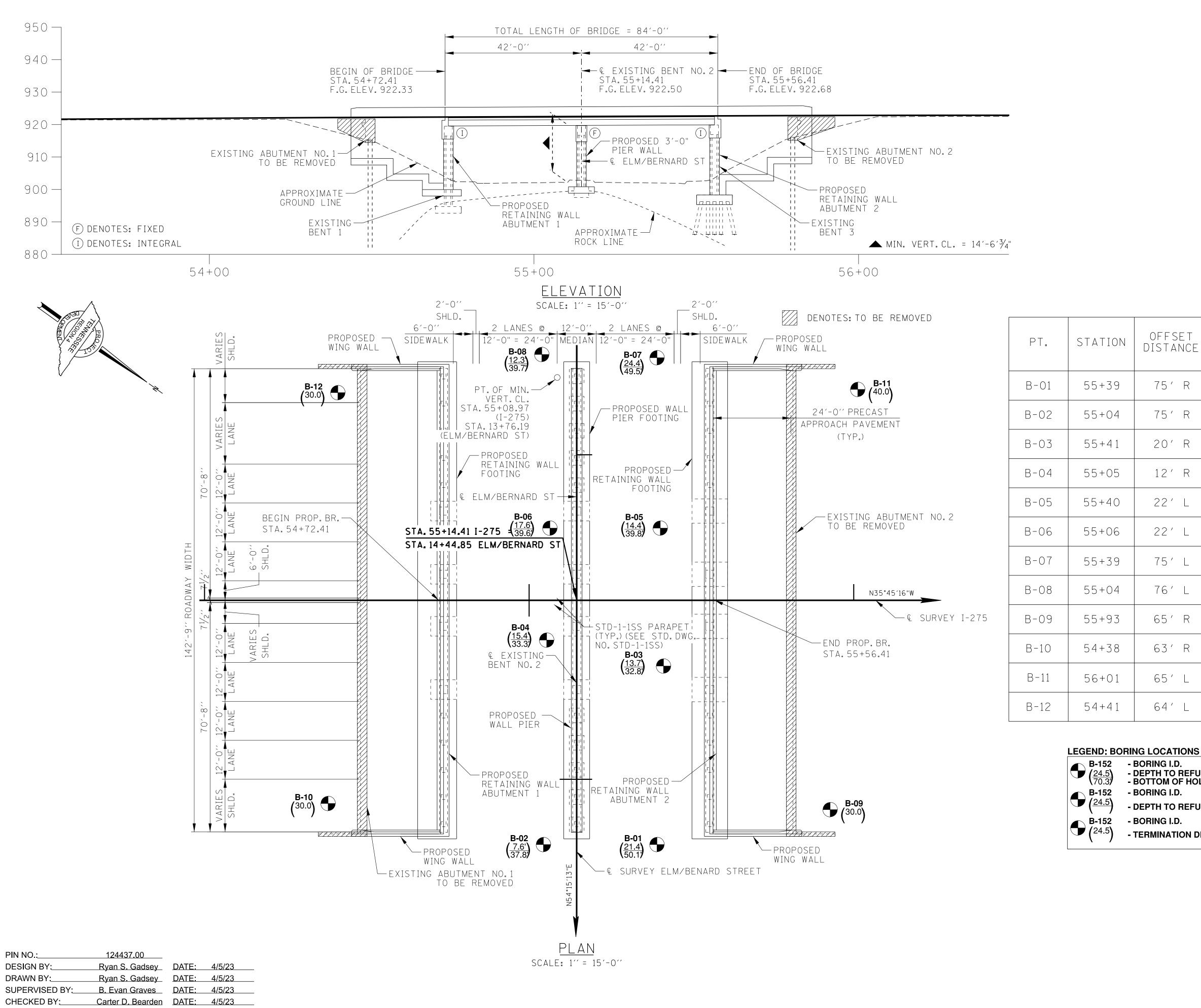
THE EXISTING ABUTMENT SLOPES SHOULD BE BENCHED TO ELIMINATE THE POTENTIAL SLOPING SLIP SURFACE BETWEEN THE LIGHT WEIGHT CELLULAR CONCRETE BACKFILL AND EXISTING ABUTMENT SLOPE. THE LIGHT WEIGHT CELLULAR CONCRETE BACKFILL SHOULD BEAR ON GENERALLY LEVEL SURFACES.

P.E. NO.: 47I275-F2-002						
PROJECT NO.			YEAR	SHEET NO.		
BR-I-275-3(136)			2023	1 OF 4		
	REVISIONS					
NO.	DATE	BY	BRIEF DESCRIPTION			

TER STRUCTURES DIVISION INSERTS SEISMIC E WALL TYPES TO SATISFY THE FASCIA DEFLECTION VALUES (IF APPLICABLE).

TREME EVENT I STATE LOADS. THE TDOT OVIDE GROUND MOTION FOR THE SITE.

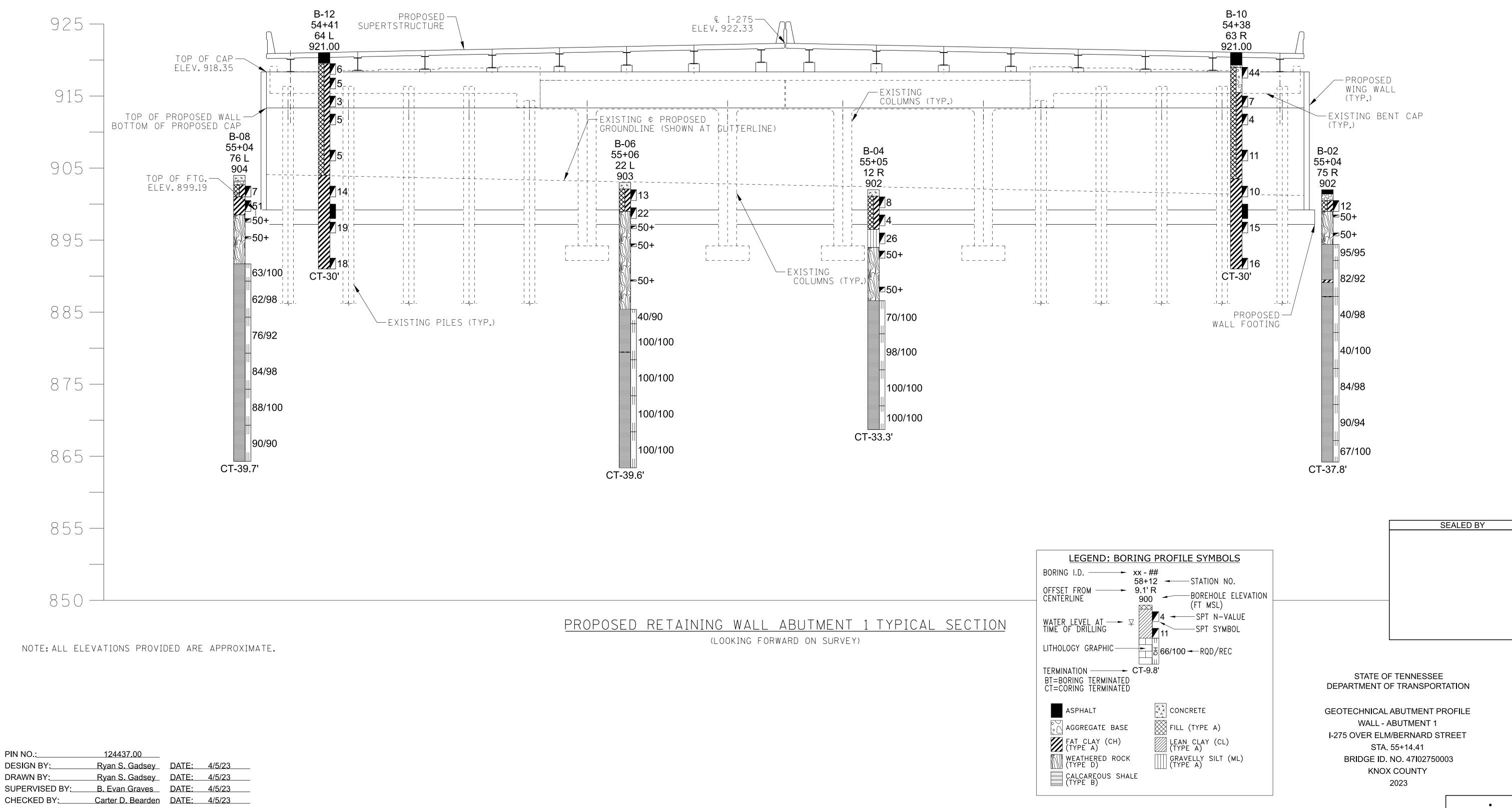
STED ARE FOR GEOTECHNICAL RECOMMENDATIONS 'S MAY NECESSITATE A REEVALUATION OF THE IA REQUIREMENTS SHALL BE DETERMINED BY THE


LL DETERMINE THE ALLOWABLE LATERAL WALLS. MEASURED AT THE PILE HEAD. AND IE "OTHER DESIGN REQUIREMENTS" NOTES.

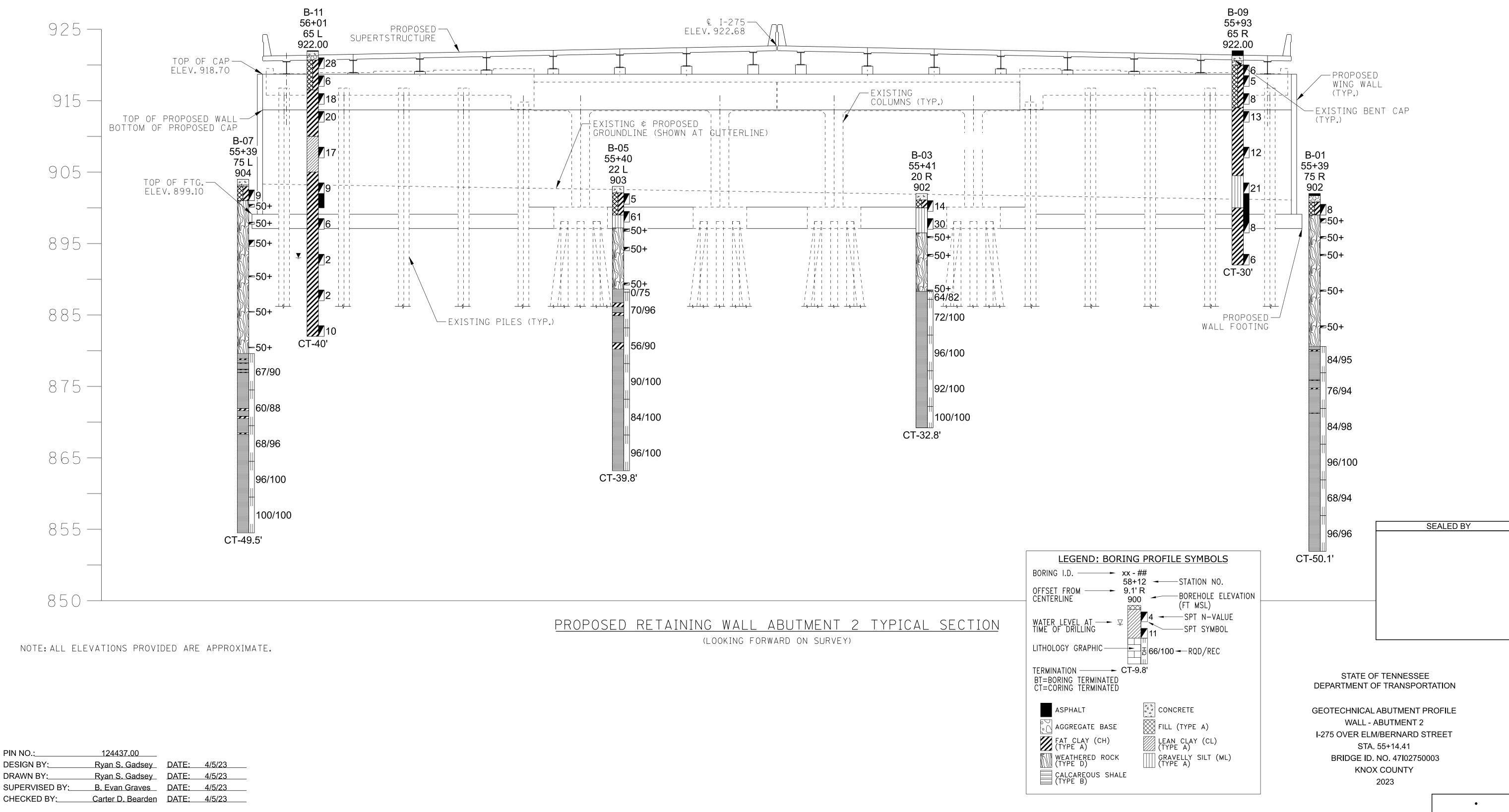
> STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

GEOTECHNICAL WALL DESIGN NOTES AND REQUIREMENTS I-275 OVER ELM/BERNARD STREET STA 55+14.41 BRIDGE ID. NO. 47102750003 KNOX COUNTY 2023

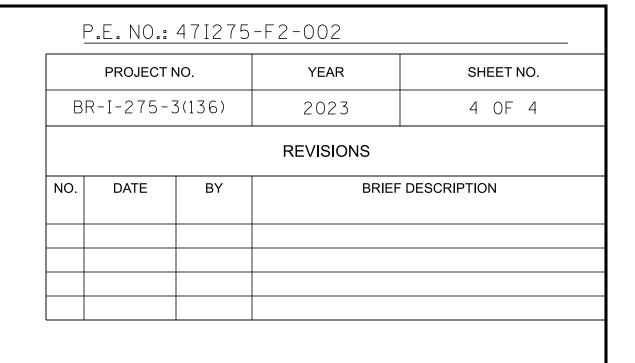
SEALED BY


•

P.E. NO.: 47I275-F2-002											
	PROJECT N	10.	YEAR	SHEET NO.							
В	R-I-275-3	3(136)	2023	2 OF 4							
REVISIONS											
NO.	DATE	BY	BRIEF	DESCRIPTION							


OFFSET DISTANCE	GROUND Elevation (MSL FT)	ROCK ELEVATION (MSL FT)
75′ R	902	880.6
75′ R	902	894.4
20′ R	902	888.3
12′ R	902	886.6
22′ L	903	888.6
22′ L	903	885.4
75′L	904	879.6
76′L	904	891.7
65′R	922	N/A
63′ R	921	N/A
65′L	922	N/A
64′L	921	N⁄A

SEALED BY - DEPTH TO REFUSAL (ABOVE LINE) - BOTTOM OF HOLE (BELOW LINE) - DEPTH TO REFUSAL - TERMINATION DEPTH (NO REFUSAL) 2025 ADT = 7492070'-8" ROADWAY (NB&SB) WITH STD-1-1SS PARAPET DESIGN SPEED = 55 MPH STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION GEOTECHNICAL FOUNDATION DATA WALLS I-275 OVER ELM/BERNARD STREET STA. 55+14.41 BRIDGE ID. NO. 47102750003 KNOX COUNTY 2023 •



DRAWN BY:	Ryan S. Gadsey	DATE:	4/5/23
SUPERVISED BY:	•		
CHECKED BY:	Carter D. Bearden	DATE:	4/5/23

	P.E. NO.: 47I275-F2-002												
	PROJECT N	NO.	YEAR	SHEET NO.									
В	R-I-275-3	3(136)	2023	3 OF 4									
			REVISIONS										
NO.	DATE	BY	BRIEF	DESCRIPTION									

DRAWN BY:	Ryan S. Gadsey	DATE:	4/5/23
SUPERVISED BY:	B. Evan Graves	DATE:	4/5/23
CHECKED BY:	Carter D. Bearden	DATE:	4/5/23

Appendix II

Field Exploration Procedures

Test Boring/Pit Record Legend

Test Boring Records

Rock Core Photos

HOLLOW STEM AUGERING PROCEDURES WITH STANDARD PENETRATION RESISTANCE TESTING AASHTO T 206

The borings were advanced using auger drilling techniques. At regular intervals, soil samples were obtained with a standard 1.4-inch I.D., 2.0-inch O.D., split-tube sampler. The sampler was initially seated 6 inches to penetrate any loose cuttings and then driven an additional foot with blows of a 140-pound hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is the standard penetration resistance. Standard penetration resistance, when properly evaluated, is an index to the soil's strength and density. The criteria used during this exploration are presented on the Test Boring Record Legend.

Representative portions of the soil samples, thus obtained, were placed in sealed containers and transported to the laboratory. The engineer selected samples for laboratory testing. The Test Boring Records in this Appendix provide the soil descriptions and penetration resistances.

Soil drilling and sampling equipment may not be capable of penetrating hard cemented soils, thin rock seams, large boulders, waste materials, weathered rock, or sound continuous rock. Refusal is the term applied to materials that cannot be penetrated with soil drilling equipment or where the standard penetration resistance exceeds 100 blows per foot. Core drilling is needed to determine the character and continuity of the refusal materials.

UNDISTURBED SAMPLING PROCEDURES AASHTO T 207

Relatively undisturbed samples were obtained for laboratory testing. A 3-inch O.D., 16-gauge, steel tube was slowly and uniformly pushed into the soil at the desired sampling level. The tube was then removed from the ground and the encased soil was sealed at the ends to prevent loss of moisture. The depth at which undisturbed samples were taken is indicated on the Test Boring Records.

ROCK CORING PROCEDURES AASHTO T 225

Refusal materials were explored using a diamond-studded bit fastened to a double tube core barrel. An NQ2-size bit was used during this exploration, which obtains core samples approximately 2 inches in diameter. The materials recovered were placed in a sample box. Our engineer classified the type and hardness of the rock, core recovery, and Rock Quality Designation (RQD). Core recovery is the sample length recovered divided by the length drilled, and RQD is the sample length recovered in pieces 4 inches or longer divided by the length drilled. Both core recovery and RQD are expressed as percentages. Rock hardness, where applicable, was judged based on the following criteria:

Rock Hardness	Criteria
Very Soft	Rock disintegrates or easily compresses when touched; can be hard to very hard soil
Soft	Rock is coherent but breaks very easily with thumb pressure at sharp edges and crumbles with firm hand pressure.
Moderately Hard	Small pieces can be broken off along sharp edges by hard considerable thumb pressure; can be broken with light hammer blows.
Hard	Rock cannot be broken by thumb pressure, but can be broken by moderate hammer blows.
Very Hard	Rock can only be broken by heavy hammer blows.

TEST BORING/PIT RECORD LEGEND

	FINE	AND COARS	E GRAINED	SOIL INFO	RMATION			
	AINED SOILS GRAVELS)		GRAINED SO		PART	ICLE SIZE		
<u>N</u>	Relative Density	N	<u>Consistency</u>	Qu, KSF Estimated	Boulders	Greater than 300 mm (12 in)		
0-4	Very Loose	0-1	Very Soft	0-0.5	Cobbles	75 mm to 300 mm (3 to 12 in)		
5-10	Loose	2-4	Soft	0.5-1	Gravel	4.74 mm to 75 mm (3/16 to 3 in)		
11-20	Firm	5-8	Firm	1-2	Coarse Sand	2 mm to 4.75 mm		
21-30	Very Firm	9-15	Stiff	2-4	Medium Sand	0.425 mm to 2 mm		
31-50	Dense	16-30	Very Stiff	4-8	Fine Sand	0.075 mm to 0.425 mm		
Over 50	Very Dense	Over 31	Hard	8+	Silts & Clays	Less than 0.075 mm		
and testing and to o driven three 6-inch actuated by a rope	btain relative density increments with a 140	and consistenc lb. hammer fa w counts requi tables.	y information Illing 30 inchor red to drive t	. A standard es. The ham he sampler th	1.4-inch I.D./2- mer can either	rbed soil sample for examination inch O.D. split-barrel sampler i be of a trip, free-fall design, c rements are added together and		
		RO		RTIES				
	LITY DESIGNATION (RQD)			ROCK HARD			
Percent RQD	Quality		Very Hard:		broken by heavy l			
0-25	Very Poor		Hard:	Rock cannot moderate har		nb pressure, but can be broken by		
25-50	Poor		Moderately		an be broken off along sharp edges by considerable			
50-75	Fair		Hard:			roken with light hammer blows. ry easily with thumb pressure at		
75-90	Good		Soft:			h firm hand pressure.		
90-100	Excellent		Very Soft:	Rock disinteg hard to very h		mpresses when touched; can be		
RQD = <u>Sum of</u>	4 in. and longer Rock Pie Length of Core Ru		X100	43 RQD		<u>e Diameter</u> <u>Inches</u> BQ 1-7/16		
Recovery =	Length of Rock Core Rec Length of Core Ru	overed	X100	NQ 63 REC		NQ 1-7/8 HQ 2-1/2		
	Longar of Coro ra		SYMBOL					
		ERIAL TYPES			50			
						andard Penetration, BPF		
13741	High Plasticity	[型] Data	[777	1		visture Content, %		
, Topsoil	Inorganic Silt or Clay	또 와 안 와		Schist		juid Limit, %		
	Organic					asticity Index, %		
Asphalt	Silts/Clays			Amphibolite		cket Penetrometer Value, TSF		
Crushed Limestone	Well-Graded Gravel	Sandst	one	Metagraywack	Un	confined Compressive Strength timated Qu, TSF		
×	Poorly-Graded	× × × × Siltston	e /	Phylite	γ _{D:} Dr	y Unit Weight, PCF		
Shot-rock	Gravel	<u> </u>	Ĺ	,		nes Content		
Shot-rock Fill	Silty Gravel	Shale				SAMPLING SYMBOLS		
	Clayey Gravel	Claysto	ne			idisturbed No Sample Recovery		
Low Plasticity Inorganic Silt		N. (18						
	Well-Graded Sand	Weathe Rock	ered			lit-Spoon		
Inorganic Silt High Plasticity	1					mple Water Level After Drilling		
Inorganic Silt High Plasticity Inorganic Silt Low Plasticity	Sand Poorly-Graded	Rock	ie			mple / Water Level		

BORING NO.: B-01 I-275 STATION NO.: 55+39 OFFSET: 75 R

R	OJECT LOCATION: Knox	x County, Tennessee										
ELE	EVATION: 902 feet ±	BORIN	IG STARTED: 1	TARTED: 12/21/2022 RIG TYPE: Diedrich D-5				ch D-50	BORING DIA. (IN): 3-1/-			
DRI	ILLING METHOD: Rock	BORING COMPLETED: 12/21/2022					HAMMER: Auto	matic	CORE DIA.: NQ=1-7/8			
	OUNDWATER: / ATD		Remarks:									
3	ELEV. DEPTH (FT.) (FT.)	MATERIAL DESCRI	PTION	L	S R	м	PI		TANCE (N			_OWS/6"
	900.8- 900.8- 900.8- 900.8- 1.2' A F 899.0- 3' C 900.8- 5 5.5' W 900.8- 5.5' W 900.8- 5.5' W 900.8- 5.5' W 900.8- 10 10 10 10 10 10 10 10 10 10	sphalt, 4 inches ggregate base, 10 inche AT CLAY, (CH), few roc ace sand, firm, orange b ray, mottled, moist CLAYEY SAND WITH GF ery dense, tan brown, dry VEATHERED ROCK, sa hale fragments, little clay ense, tan brown, dry VEATHERED ROCK, sa hale fragments, very den ry VEATHERED ROCK, sa hale fragments, few silt, v ray with tan brown, dry VEATHERED ROCK, sa hale fragments, few claye ense, tan brown, dry VEATHERED ROCK, sa hale fragments, few claye ense, tan brown, dry uger refusal at 21.4 feet, oring CALCAREOUS SHALE, 6	k fragments, rown with tan RAVEL (SC), y mpled as ey silt, very mpled as se, tan brown, mpled as <i>v</i> ery dense, mpled as <i>v</i> ery dense, mpled as <i>y</i> ery dense,			4.2 RUN					>>• (REC 46 - : (REC >>• 50/4" (REC >>• 50/2" (REC >>• 50/2" (REC	C:0.2) " (50+) C:0.2) " (50+) C:0.2)
	875.9= 875.9= 875.8= 875.8= 874.8= 874.6= -27.4' 874.8= -27.4' 874.6= -27.4' b b C C C C C C C C C C C C C	gray, bedded, athered to gray, bedded, 75° to 80° athered to gray, bedded, 75° to 80°			RQE REC) - 8 : - 9: 2 (- 5) - 7	5% (NQ) .0' - Depth from 25. 6%			25.1' / 876 30.1' / 871		

BORING NO.: B-01 I-275 **STATION NO.: 55+39** OFFSET: 75 R

PR	OJECT:	I-275 Bridg	ge over Elm Street		JOB NO	: 22430250	SHEET 2 OF 2	
PR	OJECT I	OCATION:	Knox County, Tenness	see				
EL	EVATIO	N: 902 feet	±	BORING STARTED:	ING STARTED: 12/21/2022 RIG TYPE:			BORING DIA. (IN): 3-1/4"
DR	RILLING I	METHOD: R	Rock Core	BORING COMPLETED:	12/21/2022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
	ROUNDW 7 ATD	/ATER:		Remarks:				
G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL [DESCRIPTION	LSI	r m pi	STANDARD PENETR/ RESISTANCE (N 0 10 20 30 40 5	I) BLOWS/6"
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/13/23	851.9-	- 35	continuous, good c bedding angle, slig fresh, medium Soil seam	ALE, gray, bedded, juality, 75° to 80° htly weathered to ALE, gray, bedded, ality to excellent bedding angle, red to fresh,)		RQD - 8 REC - 9 RUN 4 RUN - 5 RQD - 9 REC - 1 RUN 5 RQD - 6 REC - 9 REC - 9	.0' - Depth from 30.1' to 35.1' 4% <u>8%(Continued)</u> (NQ) .0' - Depth from 35.1' to 40.1' 6% 00% (NQ) .0' - Depth from 40.1' to 45.1' 8% 4% (NQ) .0' - Depth from 45.1' to 50.1' 6%	 35.1' / 866.9' msl 40.1' / 861.9' msl 45.1' / 856.9' msl

BORING NO.: B-02 I-275 STATION NO.: 55+04 OFFSET: 75 R

PRO	JECT LO	OCATIO	DN:	Knox County, Tenn	essee										
ELE\	ATION	: 902	feet ±	±	BORING	DRING STARTED: 12/22/2022				RIG TYPE: Diedrich D-50) BC	BORING DIA. (IN): 3-1/4			
DRIL	LING M	IETHOE): R	ock Core	BORING	RING COMPLETED: 12/22/2022				HAMMER: Automatic	СС	CORE DIA.: NQ=1-7/8 in			
GRO Dry A	UNDW/ ATD	ATER:				Remarks:							<u>.</u>		
G	ELEV. [(FT.)	DEPTH (FT.)				ΓΙΟΝ		L	6 R	м	PI	STANDARD PENET RESISTANCE (0 10 20 30 40	N)		BLOWS/6
	902.0 901.4- 900.5- 899.0- 899.0- 889.5- 889.1- 887.2= 887.1 887.2= 887.1 - - - - - - - - - - - - -		0.6' - 1.5' - 3' - 7.6' - 12.9' 14.9' 14.9'	Asphalt, 7 inches Aggregate base, FAT CLAY, (CH stiff, purple with WEATHERED F shale fragments, dry <i>Auger refusal at</i> <i>coring</i> CALCAREOUS continuous, exce quality, 80° to 85 weathered to fre Soil seam CALCAREOUS continuous, goo bedding angle, s fresh, medium Soil seam CALCAREOUS continuous, poo 80° to 85° beddi weathered to fre	11 inches), little shale red brown, 1 ROCK, sam very dense 7.6 feet, beg SHALE, gra ellent quality bedding a sh, medium SHALE, gra d quality, 80 lightly weat SHALE, gra r quality to g ng angle, sl	moist pled as a, tan brown, gan NQ ay with tan, to good angle, slightly ay with tan, of to 85° hered to ay with tan, good quality, ightly	Fill Residuum Bedrock			RUI RQE RUI RUI RUI RUI RUI RUI RUI RUI RUI RUI	N - 2 2 D - 99 N - 5 D - 8 D - 8 C - 9 N - 5 D - 4 C - 9 N - 5 D - 4 C - 1 N - 5 D - 4 C - 1	5% (NQ) .0' - Depth from 9.8' to 14.8' 2% 2% (NQ) .0' - Depth from 14.8' to 19.4 0% 8% (NQ) .0' - Depth from 19.8' to 24.4 0% 00%	8' 8'	9. 14 15	3 - 2 - 10 (12) (<i>REC:0.9</i>) 50/4" (50+) (<i>REC:0.2</i>) 50/5" (50+) (<i>REC:0.3</i>) 8' / 892.2' msl 4.8' / 887.2' msl 0.8' / 887.2' msl 0.8' / 877.2' msl 0.8' / 877.2' msl

BORING NO.: B-02 I-275 STATION NO.: 55+04 OFFSET: 75 R

PF	ROJECT:	I-275 Bridg	ge over Elm Street		JOB NO: 22430250 SHEET 2 OF 2									
PF	ROJECT	LOCATION:	Knox County, Tennes	see										
EL	EVATIO	N: 902 feet	±	BORING STA	ARTED:	12/22/202	2	RIG TYPE: Diedrich D-	50 BORIN	0 BORING DIA. (IN): 3-1/4"				
DF	RILLING	METHOD: R	Rock Core	BORING CO	MPLETED:	12/22/202	2	HAMMER: Automatic	CORE	DIA.: I	NQ=1-7/8 in			
	ROUNDV Y ATD	VATER:		R	emarks:									
G	ELEV (FT.)	DEPTH (FT.)	MATERIAL I	DESCRIPTION	1	L S								
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/13/23	864.2-		CALCAREOUS SH continuous, excelle quality, 70° to 85° H weathered to fresh Coring terminated a	ent quality to bedding angl , medium <i>(Co</i>	fair le, slightly		RQD - 9 - <u>REC - 9</u> RUN 7	5.0' - Depth from 29.8' to 34 90% 44%(<i>Continued)</i> (NQ) 8.0' - Depth from 34.8' to 3 57%			67.2' msl			

BORING NO.: B-03 I-275 STATION NO.: 55+41 OFFSET: 20 R

BORING NO.: B-03 I-275 STATION NO.: 55+41 OFFSET: 20 R

PROJECT LOCATION: Knox County, Tennessee ELEVATION: 902 feet # DOINOS STARTED: 12/29/2022 RIG TYPE: Diedneh D-50 BORRING DIA. (IN): 3-1/4* DRULING METHOD: Hollow Stem Auger BORING COMPLETED: 12/29/2022 HAMMER: Automatic CORE DIA: NO=1-78 in GOUNDWATER: Dry ATD G ELEV DEPTH CALCAREOUS SHALE, gray, bedded, feet, medium/Continued) SHALE, feet, medium/Continued SHALE, feet, medium/Con	PR	OJECT:	I-275 Br	ridge over Elm Street				JOB NC	: 2243025	0	SHEET 2	OF 2
DRILLING METHOD: Hollow Stem Auger BORING COMPLETED: 12/29/2022 HAMMER: Automatic CORE DIA: NQ=1-7/8 in GROUNDWATER: Dry ATD Remarks: Remarks: CORE DIA: NQ=1-7/8 in G ELEV DEPTH (FT.) MATERIAL DESCRIPTION L S G ELEV DEPTH (ST.) MATERIAL DESCRIPTION L S G CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° bedding angle, slightly weathered to fresh, medium(Continued) RUN 5 (NQ) REC - 100%(Continued) 32.8' / 869.2' msl RQD - 100% (Continued) G	PR	OJECT I	OCATION	N: Knox County, Tennes	see							
GROUNDWATER: Pertion Remarks: G ELEV DEPTH MATERIAL DESCRIPTION L S B88.2 CALCAREOUS SHALE; gray, bedded, joint and start and s	ELI	EVATION	I: 902 fe	eet ±	BORING	STARTED:	12/29/2022		RIG TYPE:	Diedrich D-50	BORING DI	A. (IN): 3-1/4"
Big CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° Continuous, excellent quality, 75° to 80° Continuous, excellent quality, 75° to 80° Coring terminated at 32.8 feet	DR	RILLING	METHOD:	Hollow Stem Auger	BORING	COMPLETED:	12/29/2022		HAMMER:	Automatic	CORE DIA.:	: NQ=1-7/8 in
G (FT.) (FT.) CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° bedding angle, slightly weathered to fresh, medium(Continued) RUN 5 (NQ) 32.8' / 869.2' msl			ATER:			Remarks:						
- 35 - fresh, medium(Continued) REC - 100%(Continued) - - -	G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL I	DESCRIPT	ION	L S					
		869.2-		fresh, medium(Con	tinued)			RUN - 3 RQD - 1	00% - Depth fi			

BORING NO.: B-04 I-275 STATION NO.: 55+05 OFFSET: 12 R

			-	e over Elm Street						JOB NO: 22430250 SHEET 1 0									
				Knox County, Tenne	ssee														
ELE	VATIO	N: 902	feet :	<u>+</u>		STARTED:		2/28/2							_				
DRI	LLING I	METHOD): H	ollow Stem Auger	BORING	BORING COMPLETED: 12/29/2022 HAMMER: Automatic								(CORE DIA.: NQ=1-7/8				
		/ATER:				Remarks:													
3	ELEV. (FT.)	DEPTH (FT.)		MATERIAL	DESCRIPT	ION		L	s	R	N P		RESIS	PENE TANCE 0 30	E (N)	ION 60 70 80 9	BLOWS/6"		
	902.0_	— o —																	
	901.1- 899.0-		- - 0.9' SANDY FAT CLAY WITH GRAVEL, (CH), trace sand, firm, brown, slightly moist ⊒ - - 3' FAT CLAY, (CH), trace sand, soft, brown with red brown, slightly moist	SANDY FAT CLAY WITH GRAVEL, (CH), trace sand, firm, brown, slightly moist FAT CLAY, (CH), trace sand, soft,	CH), trace sand, firm, brown, slightly noist FAT CLAY, (CH), trace sand, soft,								8				7 - 4 - 4 (8) (<i>REC</i> :0.5) 2 - 2 - 2 (4)		
	896.5-	- 5 - 	5.5'	GRAVELLY SILT brown, dry, Shale	, (ML), ver fragments	ML), very stiff, tan agments								2 6			(REC:0.8) 29 - 12 - 14 (26)		
	894.0-	 - 10 	8' -	WEATHERED Re shale fragments, dry, Shale fragme	ery dense	oled as , tan brown,	Residuum										(REC:0.6) 28 - 50 (50+) (REC:0.8) >>● 36 - 50/2" (50+)		
	886.6-	- 15	15.4'	Coning		/	Bec					(NQ)					(REC:0.6)		
	885.0-	 - 20	17' -	CALCAREOUS S bedded, incompe to 80° bedding ar weathered to fres CALCAREOUS S	tent, poor gle, mode n, medium HALE, gra	quality, 75° rately ay, bedded,	Bedrock			R R	UN - QD -	4.6' - Depth fr	om 15	.4' to 20)'	20)' / 882.0' msl		
				continuous, excel bedding angle, sli fresh, medium						R R	UN - QD -	(NQ) 5.0' - Depth fr 98% 100%	om 20	' to 25'					
	25 									R R	UN - QD -	(NQ) 5.0' - Depth fr 100% 100%	om 25	' to 30'		25	5' / 877.0' msl		
														— 30)' / 872.0' msl				

BORING NO.: B-04 I-275 STATION NO.: 55+05 OFFSET: 12 R

PR	OJECT:	I-275 Bri	idge over Elm Street			JOB NC): 2243025	0	SHEET 2 OF 2
PR	OJECT	LOCATION	I: Knox County, Tennes	see					
ELI	EVATIO	N: 902 fe	et ±	BORING STARTED:	12/28/2022		RIG TYPE:	Diedrich D-50	BORING DIA. (IN): 3-1/4"
DR	RILLING	METHOD:	Hollow Stem Auger	BORING COMPLETED	12/29/2022		HAMMER:	Automatic	CORE DIA.: NQ=1-7/8 in
	ROUNDV y ATD	VATER:		Remarks:					
G	ELEV (FT.)	. DEPTH (FT.)	MATERIALI	DESCRIPTION	L S				
BORING RECORD S&ME - SPLIT LITHOLOGY 22430280.GPJ 2016.GDT 4/13/23	868.7-		Coring terminated a	at 33.3 feet		RQD - 1	(NQ) 5.3' - Depth fr 00% 00%(Contine	rom 30' to 33.3' ued)	33.3' / 868.7' msl
									Logged by: David Abston

BORING NO.: B-05 I-275 STATION NO.: 55+40 OFFSET: 22 L

	ON: Knox County, Tennes	200						I	
		1					l .		
ELEVATION: 903	feet ±	BORING STARTED:	12/2	29/202	2		RIG TYPE: Diedrich D-	50 BORING DIA. (I	N): 3-1/
DRILLING METHO	D: Hollow Stem Auger	BORING COMPLETED:	12/2	29/202	2		HAMMER: Automatic	CORE DIA.: N	Q=1-7/8
GROUNDWATER: Dry ATD		Remarks:							
G ELEV. DEPTH (FT.) (FT.)	MATERIAL	DESCRIPTION		L S	R	л Ы	I LOIOTANOL		_OWS/6"
885.3 884.9 20 20	 (CH), trace sand, moist 4' GRAVELLY SILT, brown, dry, Shale 5.8' WEATHERED RO shale fragments, v dry, Shale fragments, v dry, Shale fragment 14.4' Coring CALCAREOUS S bedded, incompet very poor quality to 80° bedding angle fresh, medium Soil seam CALCAREOUS S bedded, continuou 80° bedding angle fresh, medium Soil seam CALCAREOUS S bedded, continuou 80° bedding angle fresh, medium Soil seam 	Y WITH GRAVEL, firm, brown, slightly (ML), hard, tan fragments DCK, sampled as rery dense, tan brown, nts A.4 feet, began NQ HALE, gray with tan, ent to continuous, o fair quality, 75° to a, moderately m HALE, gray with tan, us, fair quality, 75° to a, slightly weathered to HALE, gray with tan, us, fair quality, 75° to a, slightly weathered to HALE, gray with tan, us, fair quality, 75° to a, slightly weathered to b, slightly weathered to tan, s, fair quality of b, slightly weathered to b, sl	Fill Residum Bedrock			QD - (EC - 7 UN 2 UN - 5 QD - 7 EC - 9 UN 3 UN - 5 QD - 5 EC - 9 EC - 9 UN 4	0.4' - Depth from 14.4' to 14 % 5% (NQ) 5.0' - Depth from 14.8' to 19 70% 96% (NQ) 5.0' - Depth from 19.8' to 24 56% 90% (NQ) 5.0' - Depth from 24.8' to 29 90%	A.8' (REC) (C:0.3) " (50+) C:0.4) " (50+) 520.09si 3.2' msi

BORING NO.: B-05 I-275 STATION NO.: 55+40 OFFSET: 22 L

PR	OJECT:	I-275 Br	idge over Elm Street				JOB NC	: 2243025	0	SHEET 2 OF 2	٦
PR	OJECTI		I: Knox County, Tennes	see							٦
EL	EVATION	N: 903 fe	et ±	BORING	STARTED:	12/29/2022		RIG TYPE:	Diedrich D-50	BORING DIA. (IN): 3-1/4	4"
DR		METHOD:	Hollow Stem Auger	BORING	COMPLETED:	12/29/2022		HAMMER:	Automatic	CORE DIA.: NQ=1-7/8 i	in
	ROUNDW y ATD	/ATER:			Remarks:						
G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPT	ΓΙΟΝ	L S					
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/13/23	863.2-		CALCAREOUS SH bedded, continuou excellent quality, 75 angle, slightly weat medium(<i>Continued</i>) Coring terminated a	s, fair qua 5° to 80° hered to †	ality to bedding fresh,		RQD - 8 REC - 1 RUN 6	5.0' - Depth fr 34% 00% <i>(Continu</i> (NQ) 5.0' - Depth fr 96%	rom 29.8' to 34.8' ued) rom 34.8' to 39.8'	34.8' / 868.2' msl	

BORING NO.: B-06 I-275 STATION NO.: 55+06 OFFSET: 22 L

	IFCTI	OCATIO	NI- K	Knox County, Tenn										SHEET	1 OF 2			
		N: 903 1				STARTED:	12	2/27/2	0.2	2			RIG TYPE: Diedrich D-50	BODING	G DIA. (IN): 3-1			
									-				HAMMER: Automatic					
				ollow Stem Auger	BORING	BORING COMPLETED: 12/28/2022 HAMMER: Automatic Remarks:								COREL	CORE DIA.: NQ=1-7/8			
Dry A		/ATER:				Remarks.												
-	ELEV. (FT.)	DEPTH (FT.)		MATERIA	L DESCRIPT	ION		L	s	R	М	PI	STANDARD PENETRATION RESISTANCE (N) 10 20 30 40 50 60 70 80 90100 4 13 4 4 50 60 70 80 90100 8 - 6 - 7 (13) (REC: 0.8) 2 - 2 - 20 (22) (REC: 0.9) 50/5" (50+) (REC: 0.4) 50/5" (50+) (REC: 0.4) 50/5" (50+) (REC: 0.3) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
ç	903.0_ 902.1-		0.9' - 4' -	Concrete, 11 inc FAT CLAY, (CH) soft, brown with WEATHERED F shale fragments, dense, tan brown), trace sand red brown, ROCK, sam medium de	slightly moist pled as ense to very	Fill Residuum								(REC:0.8) 2 - 2 - 20 (22) (REC:0.9) >>● 50/5" (50+) (REC:0.4) >>● 50/5" (50+) (REC:0.3) >>● 50/2" (50+)			
٤	885.4-		17.6'¬	Auger refusal at coring CALCAREOUS continuous, poor quality, 75° to 80 moderately weat	SHALE, gra r quality to e)° bedding a	ay, bedded, excellent angle,	Bedrock			ו ו ו ו ו	rqd Rec Run	- 2 - 4 - 90 2 (0' - Depth from 17.6' to 19.6 0% 0% NQ) 0' - Depth from 19.6' to 24.6		9.6' / 883.4' msl			
	879.5 879.4 - 25 - - 25 - 					, 75° to 80°				F F F	REC RUN RUN	- 1(3 (- 5) - 1	00% NQ) 0' - Depth from 24.6' to 29.6 00%	,	4.6' / 878.4' msl 9.6' / 873.4' msl			

BORING NO.: B-06 I-275 STATION NO.: 55+06 OFFSET: 22 L

PF	ROJECT:	I-275 Br	idge over Elm Street				JOB NO	: 2243025	0	SHEET 2 OF 2	2
PF	ROJECT	LOCATION	I: Knox County, Tennes	see							
EL	EVATIO	N: 903 fe	et ±	BORING	STARTED:	12/27/2022		RIG TYPE:	Diedrich D-50	BORING DIA. (IN):	3-1/4"
DF	RILLING	METHOD:	Hollow Stem Auger	BORING	COMPLETED:	12/28/2022		HAMMER:	Automatic	CORE DIA.: NQ="	1-7/8 in
	ROUNDW y ATD	VATER:			Remarks:						
G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPT	ION	L S					
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/13/23	863.4-		CALCAREOUS SH continuous, excelle bedding angle, fres medium <i>(Continued</i>)	ent quality sh, ()	, 75° to 80°		RQD - 1 REC - 1	5.0' - Depth fi 00% 00%(<i>Contine</i> (NQ) 5.0' - Depth fi 00%	rom 29.6' to 34.6' <i>ued)</i> rom 34.6' to 39.6'	34.6' / 868.4' n	

BORING NO.: B-07 I-275 STATION NO.: 55+39 OFFSET: 75 L

PR	OJECT L	OCATION:	Knox County, Tenne	ssee												
ELE	EVATION	: 904 feet	±	BORING STARTED:	BORING STARTED: 12/20/2022					RIG TYPE: Diedrich D-50					g dia. (in): 3-1
DR	ILLING M	1ethod: F	Rock Core	BORING COMPLETED	BORING COMPLETED: 12/20/2022						R: Aut	omatic	C	ORE	dia.: NQ	=1-7/8
	OUNDW/ ATD	ATER:		Remarks:												
3	ELEV.[(FT.)	DEPTH (FT.)	MATERIAL	DESCRIPTION		L	s	RI	M PI	ST.		STANCE	(N)	ION 60 70 80)WS/6"
	904.0 903.2 903.0 901.0 896.0 896.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aggregate base, FAT CLAY WITH shell fragments, s gray, moist WEATHERED R shale fragments, dry WEATHERED R shale fragments, brown with red br WEATHERED R	2 inches GRAVEL, (CH), little tiff, red brown with OCK, sampled as very dense, tan brown, OCK, sampled as ew silty clay, very with red brown, dry OCK, sampled as ew silt, very dense, tar own, dry							•				2 - 3 - (0.8) 50+) 0.4) 50+) 0.3) (/4" (50+) 0.7) 50+)
	882.0-	- – - 20 – - – 22' - – 22'	shale fragments, gray with tan brow WEATHERED R shale fragments,	ew silt, very dense, vn, dry											>> \$ 50/1" (; (<i>REC</i> :)	0.1)
	879.6- 878.9- 878.7- 878.3 878.2- 877.4 877.3 877.0 877.0 876.9	- 24.4 - 25 - 25.1 - 25.3 - 25.7 - 25.8 26.6 - 26.6 - 26.7 27 - 27.1 - 30 -	gray brown, dry Auger refusal at 2 coring CALCAREOUS S fairly continuous, bedding angle, sli fresh, medium Soil seam CALCAREOUS S	4.4 feet, began NQ GHALE, gray, bedded, fair quality, 75° to 80° ghtly weathered to GHALE, gray, bedded, fair quality, 75° to 80°	Bedrock			R R	UN 1 UN - { QD - { EC - {	5.1' - Depth 67%	from 24	.4' to 29	0.5'	2	^{≯>} ♥50/1" (; (<i>REC:</i> 29.5' / 874.5	0.1)

BORING NO.: B-07 I-275 STATION NO.: 55+39 OFFSET: 75 L

PROJECT LOCATION: Knox County, Tennessee ELEVATION: 904 feet ± BORING STARTED: 12/20/2022 DRILLING METHOD: Rock Core BORING COMPLETED: 12/20/2022 GROUNDWATER: Remarks: Dry ATD Remarks: G ELEV. DEPTH MATERIAL DESCRIPTION L S 871.9- 871.6 870.8- 870.5- 868.3- 35.7- 868.3- 87.7- 87.	
DRILLING METHOD: Rock Core BORING COMPLETED: 12/20/2022 GROUNDWATER: Remarks: Dry ATD Remarks: G ELEV. DEPTH (FT.) MATERIAL DESCRIPTION L S 32.1 (FT.) Fresh, medium Soil seam Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam Image: Calculation of the second of th	2 HAMMER: Automatic CORE DIA.: NQ=1-7/8 RUN 2 (NQ) RUN - 5.0' - Depth from 29.5' to 34.5' RQD - 60% REC - 88%(Continued) RUN 3 (NQ)
GROUNDWATER: Dry ATD Remarks: G ELEV. DEPTH (FT.) MATERIAL DESCRIPTION L S Soil seam Soil seam S Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam Soil seam	RUN 2 (NQ) RUN - 5.0' - Depth from 29.5' to 34.5' RQD - 60% REC - 88%(<i>Continued</i>) RUN 3 (NQ)
Dry ATD G ELEV. DEPTH (FT.) MATERIAL DESCRIPTION L S 871.9- 871.6- 870.8- 870.5- 870.5- 868.5- 868.5- 868.3- - 32.1- - - 32.4' - 33.2' - - 33.5' 868.5- 868.3- - fresh, medium Soil seam Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Image: Calcore and the second	RUN - 5.0' - Depth from 29.5' to 34.5' RQD - 60% <u>REC - 88%(Continued)</u> RUN 3 (NQ)
G (FT.) (FT.) (FT.) 871.9- 871.6	RUN - 5.0' - Depth from 29.5' to 34.5' RQD - 60% <u>REC - 88%(Continued)</u> RUN 3 (NQ)
871.6 -32.4' 870.8 33.2' 870.5 -33.5' 686.5 -35.5' 868.3 -35.7' -35.7' -35.7' Soil seam	RUN - 5.0' - Depth from 29.5' to 34.5' RQD - 60% <u>REC - 88%(Continued)</u> RUN 3 (NQ)
ALCAREOUS SHALE, glay, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium(Continued) Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam CALCAREOUS SHALE, gray, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium Soil seam CALCAREOUS SHALE, gray, bedded, continuous, fair quality to excellent quality, 80° to 85° bedding angle, slightly weathered to fresh, medium Coring terminated at 49.5 feet	RQD - 68% 39.5' / 864.5' msl RUN 4 (NQ) RUN - 5.0' - Depth from 39.5' to 44.5' RQD - 96% 44.5' / 859.5' msl RUN 5 (NQ) 44.5' / 859.5' msl RUN - 5.0' - Depth from 44.5' to 49.5' 49.5' / 854.5' msl RUN - 5.0' - Depth from 44.5' to 49.5' 49.5' / 854.5' msl

BORING NO.: B-08 I-275 STATION NO.: 55+04 OFFSET: 76 L

PROJECT: I-275	Bridge over Elm Street			JOB NC	: 22430250	SHEET 1 OF 2
PROJECT LOCATI	ON: Knox County, Tennes	see			1	·
ELEVATION: 904	feet ±	BORING STARTED:	12/22/2022		RIG TYPE: Diedrich D-50	BORING DIA. (IN): 3-1/
DRILLING METHO	D: Rock Core	BORING COMPLETED:	12/22/2022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8
GROUNDWATER: Dry ATD		Remarks:				
ELEV. DEPTH	I MATERIAL	DESCRIPTION	LSI	R M PI	STANDARD PENETR RESISTANCE (N 0 10 20 30 40	
904.0 0 - 0 - 903.2 - 902.7	3' firm, dark brown w FAT CLAY, (CH), I hard, purple with re 5.5' WEATHERED RC shale fragments, ve dry 12.3' Auger refusal at 12 coring CALCAREOUS SI continuous to cont	inches ittle rock fragments, ittle rock fragments, ittle shale fragments, ed brown, moist CK, sampled as ery dense, tan brown, .3 feet, began NQ HALE, gray, fairly inuous, fair quality to o 85° bedding angle,	Fill Residum	RQD - 6 REC - 1 RUN 2 RUN 5 RQD - 6 REC - 9 RUN 3 RUN - 5 RQD - 7 REC - 9 RUN 4	2.4' - Depth from 12.3' to 14.7' 33% 00% (NQ) 52% 8% (NQ) 50' - Depth from 19.7' to 24.7' 76% 2% (NQ) 50' - Depth from 24.7' to 29.7' 34%	14.7' / 889.3' msl

BORING NO.: B-08 I-275 STATION NO.: 55+04 OFFSET: 76 L

PF	ROJECT:	I-275 Bridge	e over Elm Street			JOB NC	D: 22430250	SHEET 2	2 OF 2	
PF	ROJECTI	LOCATION: I	Knox County, Tennes	see			-		•	
EL	EVATIO	N: 904 feet ±	£	BORING	STARTED:	12/22/202	2	0IA. (IN): 3-1/4"		
DF	RILLING I	METHOD: RO	ock Core	BORING	COMPLETED:	12/22/202	2	HAMMER: Automatic	CORE DIA	.: NQ=1-7/8 in
	ROUNDW y ATD	VATER:			Remarks:					
G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPT	ION	L S				
	869.3-	- 35 	CALCAREOUS SI continuous, excelle bedding angle, fres feet of run could no boring Coring terminated a	ent quality, sh, mediur ot be retrie	, 75° to 85° m last 0.5 eved from	Bedrock	RQD - 8 REC - 1 RUN 6	5.0' - Depth from 29.7' to 34.7' 38% 00%(<i>Continued</i>) (NQ) 5.0' - Depth from 34.7' to 39.7' 30%	34.7'	/ 869.3' msl

BORING NO.: B-09 I-275 STATION NO.: 55+93 OFFSET: 65 R

PROJECT. 1-273	Bridge over Elm Street		JOB NO: 22430250 SHEET 1 OF 1							
PROJECT LOCATI	ON: Knox County, Tennes	ssee								
ELEVATION: 922	feet ±	BORING STARTED:	12/13/2022		RIG TYPE: Diedrich D-50	0 BORING DIA. (IN): 3-1/4				
DRILLING METHO	D: Hollow Stem Auger	BORING COMPLETED: 1	12/13/2022		HAMMER: Automatic					
GROUNDWATER: Dry ATD		Remarks:								
G ELEV. DEPTH (FT.) (FT.)	MATERIAL	DESCRIPTION	LSF	R M PI						
922.0 0 - 921.3- 920.6- 920.1- 918.5- 916.5- 914.0- 909.5- - 10 - 909.5- - 909.5- - 15 - 900.0- - - 900.0- - - - - - - - - - - - - -	3.5' firm, orange brown FAT CLAY, (CH), firm, orange tan w FAT CLAY, (CH), brown with tan, m 8' FAT CLAY, (CH), brown with red ora staining 12.5' FAT CLAY, (CH), brown with brown 17.5' SILT, (ML), little cl brown with brown slightly moist 22' FAT CLAY, (CH), brown with red, m 27.5' FAT CLAY, (CH), FAT CLAY, (CH),	<u>r' inches</u> trace rock fragments, <u>n with tan, moist</u> trace rock fragments, ith brown tan, moist few chert, firm, orange oist few silt, stiff, tan ange, moist, black few silt, stiff, tan , moist ay, very stiff, tan , relict structure,	Fill Residum	44.1 47		2 - 3 - 3 (6) (REC:1.1) 2 - 2 - 3 (5) (REC:0.6) 3 - 3 - 5 (8) (REC:1.3) 2 - 5 - 8 (13) (REC:1.3) 4 - 5 - 7 (12) (REC:1.4) 7 - 10 - 11 (21) (REC:1.4) (REC:1.4) (REC:2.0) 3 - 3 - 5 (8) (REC:1.5)				

BORING NO.: B-10 I-275 STATION NO.: 54+38 OFFSET: 63 R

				e over Elm Street			J	OB N	IO:	22430250	SHEET	1 OF 1	
				Knox County, Tenne	1								
ELE	VATION	: 921	feet ±		BORING STARTED:	12	2/12/202	22		F	RIG TYPE: Diedrich D-50	BORING	DIA. (IN): 3-1/
DRII	LLING M	1ETHO	D: Ho	blow Stem Auger	BORING COMPLETED	: 12	2/12/202	22		ŀ	HAMMER: Automatic		
	OUNDWA ATD	ATER:			Remarks:								
G	ELEV [(FT.)	DEPTH (FT.)		MATERIAL	DESCRIPTION		LS	R	M F	기 0	STANDARD PENETF RESISTANCE (I 10 20 30 40		BLOWS/6"
	921.0	- 0		Asphalt, 20 inche	5								
	919.3- 919.0	 - 5	1.7' – 2'		t inches D GRAVEL, (GP), red brown with gray,	F			7) 44	4 - 8 - 36 (44) (REC:0.6)
	915.5	 	5.5' -	red brown with br	H GRAVEL, (CL), firm own, moist soft, red brown with				22.1		•7		3 - 3 - 4 (7) (REC:0.3)
		 - 10 	-	tan orange, moist					24.7 2	24			2 - 2 - 2 (4) (REC:0.9)
	908.5-	 - 15	12.5'	FAT CLAY, (CH), stiff, red brown to black staining	few rock fragments, tan brown, moist,				16.9		•11		6 - 5 - 6 (11) (REC:0.9)
	903.5	 - 20 —	17.5'	FAT CLAY, (CH), weathered rock fr brown with dark b black staining		Residuum			20.3		•10		2 - 4 - 6 (10)
	898.5-	 	22.5'-	FAT CLAY, (CH),	little silt, stiff, tan brange, relict structure	_							(REC:1.5) (REC:2.0)
		- 25		moist					32.1		●15		5 - 6 - 9 (15) (REC:1.4)
ĩć	893.5-	 	27.5'-	fragments, very st brown orange, rel	little silt, trace shale iff, tan brown with dark ict structure, moist			3	30.7 5	56	•16		4 - 7 - 9 (16)
				Boring terminated	l at 30 feet								(REC:1.5)

BORING NO.: B-11 I-275 STATION NO.: 56+01 OFFSET: 65 L

PPC			-	e over Elm Street Knox County, Tennes	:500				B NC	-		1 OF 2
				-		10	2/19/202	<u> </u>				
	VATION				BORING STARTED:					RIG TYPE: Diedrich D		G DIA. (IN): 3-1
): HC	bllow Stem Auger	BORING COMPLETE): 12	2/19/202			HAMMER: Automat	C	
Dry	OUNDW ATD 29.00	ATER:			Remarks:							
G		DEPTH (FT.)		MATERIAL	DESCRIPTION		LS	RM	1 PI	I ILOIOTAN		BLOWS/6"
	922.0 921.9= 921.3- 920.7- 919.0- 916.5- 914.0- 910.0-	- 0 - 5 	0.1' 0.7' 1.3' 3' 5.5' 8' 8'	sand, very stiff, ora brown, slightly moi FAT CLAY, (CH), brown with tan, mo FAT CLAY, (CH), orange brown with slightly moist FAT CLAY, (CH),	inches GRAVEL, (CH), little inge brown with st few sand, firm, orang bist few sand, very stiff, tan, relict structure, few sand, very stiff, tan white, mottled,	Fill Residuum		30	2		8	10 - 15 - 13 (28) (REC:0.7) 3 - 2 - 4 (6) (REC:1.2) 6 - 8 - 10 (18) (REC:1.2) 7 - 9 - 11 (20) (REC:1.5)
	905.0-	 - 15 	17'	orange brown with structure, slightly r FAT CLAY, (CH),	tan brown, relict	e		33	2	•17		3 - 7 - 10 (17) (REC:1.4)
		 - 20						40	.5 .6 27	9		3 - 3 - 6 (9) (REC:1.5)
	900.0	 	22' -	FAT CLAY, (CH), brown, moist	firm, tan brown with			37	.1	6		(REC:2.0) 3 - 3 - 3 (6)
-	895.0-	- 25 - 30 -	27' -	FAT CLAY, (CH), fragments, very so brown, moist to ve				70	.9 39	•2		(REC:1.3)
												(REC:1.4)

BORING NO.: B-11 I-275 STATION NO.: 56+01 OFFSET: 65 L

PROJECT: I-275 E	Bridge over Elm Street		JOB	NO: 22430250	SHEET 2 OF 2
PROJECT LOCATIO	ON: Knox County, Tenness	see	I		1
ELEVATION: 922	feet ±	BORING STARTED: 12	2/19/2022	RIG TYPE: Diedrich D-50	BORING DIA. (IN): 3-1/4"
DRILLING METHOD	D: Hollow Stem Auger	BORING COMPLETED: 12	2/19/2022	HAMMER: Automatic	
GROUNDWATER: Dry ATD 29.00	1	Remarks:			
G ELEV. DEPTH (FT.) (FT.)	MATERIAL D	DESCRIPTION	L S R M	PI STANDARD PENETR. RESISTANCE (N 0 10 20 30 40	ATION I) BLOWS/6" 50 60 70 80 90100
890.0 - - - - - - 35 - - - -	32' FAT CLAY WITH G weathered rock frag stiff, tan brown with Boring terminated a	gments, very soft to brown, wet	64.3 7		0 - 1 - 1 (2) (<i>REC</i> :1.5) 0 - 2 - 8 (10) (<i>REC</i> :0.7)

BORING NO.: B-12 I-275 STATION NO.: 54+41 OFFSET: 64 L

			-	over Elm Street				•	JOB	NO	22430250	SHEET	1 OF 1
				Knox County, Tenne	1								
ELE	VATION	: 921	feet ±		BORING STARTE		2/19/202				RIG TYPE: Diedrich D-		G DIA. (IN): 3-1/
DRII	LING M	IETHOD): Ho	llow Stem Auger	BORING COMPL		2/19/202	2			HAMMER: Automatic		
GRC Dry	OUNDWA	ATER:			Rema	ırks:							
G	ELEV.C (FT.)			MATERIAL	DESCRIPTION		L S	R	м	PI	STANDARD PENE RESISTANCE 0 10 20 30		BLOWS/6"
	921.0 919.6= 919.5 - 918.0	- 0 - 5	1.4' 1.5' 3'	Asphalt, 16 inche Aggregate base, 2 FAT CLAY, (CH), brown gray, moist FAT CLAY, (CH), firm, red brown w	2 inches firm, red brown w few rock fragmer						•6 •5		2 - 3 - 3 (6) (REC:0.9) 2 - 1 - 4 (5) (REC:1.2)
	913.0-		8' —	FAT CLAY, (CH), firm, red brown w	trace rock fragme th brown tan, mo	ents, ist					•5		2 - 1 - 2 (3) (REC:0.0) 2 - 2 - 3 (5) (REC:1.5)
ΫĊ	909.0+		12' -	FAT CLAY, (CH), firm, red brown w							•5		2 - 2 - 3 (5) (REC:1.0)
	904.0	 - 20	17' -	FAT CLAY, (CH), brown with dark b moist, black staini	rown orange, mo	ttled,					•14		4 - 6 - 8 (14) (REC:1.3)
	899.0		22' —	FAT CLAY, (CH), with red, moist, bl	very stiff, tan brov ack staining	wn					•19		(REC:2.0) 4 - 7 - 12 (19) (REC:1.2)
	894.0-		27' –	FAT CLAY, (CH), with brown tan, m staining							•18		6 - 8 - 10 (18)
	891.0-	- 30		Boring terminated	l at 30 feet								(REC:1.4)

	BOI	RING B-0)1, I-275, STAT	ION 55+39, 75 FEET RIGHT: BOX 1 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
1	21.4-25.1	84	95	CALCAREOUS SHALE, gray, continuous, good quality, 75 to 80 degree bedding, slight weathering to fresh,
2	25.1-30.1	76	94	medium hard

	BC	RING B-0	01, I-275, STAT	ION 55+39, 75 FEET RIGHT: BOX 2 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3	30.1- 35.1	84	98	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 75 to 85 degree bedding, slight
4	35.1- 40.1	96	100	weathering to fresh, medium hard

	BO	RING B-0 ²	1, I-275, STATI	ON 55+39, 75 FEET RIGHT: BOX 3 OF 4
RUN	DEPTH RQD (FT) (%)		RECOVERY (%)	ROCK DESCRIPTION
4 (cont'd)	35.1- 40.1	96	100	
5	40.1- 45.1	68	94	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 80 to 85 degree bedding, slight weathering to fresh, medium hard
6	45.1- 50.1	96	96	weathening to nesh, medium hard

	BORING B-01, I-275, STATION 55+39, 75 FEET RIGHT: BOX 4 OF 4									
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION						
6 (cont'd)	45.1- 50.1	96	96	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 80 to 85 degree bedding, slight weathering to fresh, medium hard						

	BO	RING B-0	2, I-275, STAT	ION 55+04, 75 FEET RIGHT: BOX 1 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
1	7.6-9.8	95	95	CALCAREOUS SHALE, gray with tan, continuous,
2	9.8-14.8	82	92	excellent to good quality, 80 to 85 degree bedding, slight
3	14.8-19.8	40	98	weathering to fresh, medium hard

	BO	RING B-02	2, I-275, STATI	ON 55+04, 75 FEET RIGHT: BOX 2 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	14.8- 19.8	40	98	CALCAREOUS SHALE, gray with tan, continuous, poor quality, 80 to 85 degree bedding, slight weathering to
4	19.8- 24.8	40	100	fresh, medium hard

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BORING B-02, I-275, STATION 55+04, 75 FEET RIGHT: BOX 3 OF 4						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
5	24.8- 29.8	84	96	CALCAREOUS SHALE, gray with tan, continuous, good to excellent quality, 80 to 85 degree bedding, slight			
6	29.8- 34.8	90	94	weathering to fresh, medium hard			

	BO	RING B-02	2, I-275, STATI	ON 55+04, 75 FEET RIGHT: BOX 4 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
6 (cont'd)	39.8- 34.8	90	94	CALCAREOUS SHALE, gray with tan, continuous, excellent to fair quality, 80 to 85 degree bedding, slight
7	34.8- 37.8	67	100	weathering to fresh, medium hard

	BORING B-03, I-275, STATION 55+41, 20 FEET RIGHT: BOX 1 OF 2							
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION				
1	13.7-14.8	64	82	CALCAREOUS SHALE, gray with tan, fairly continuous				
2	14.8-19.8	72	100	to continuous, fair to excellent quality, 75 to 80 degree				
3	19.8-24.8	96	100	bedding, moderately weathering to fresh, medium hard				

	BO	RING B-03	3, I-275, STATI	ON 55+41, 20 FEET RIGHT: BOX 2 OF 2
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	19.8- 24.8	96	100	CALCAREOUS SHALE, gray with tan, continuous, fair
4	24.8- 29.8	92	100	to excellent quality, 75 to 80 degree bedding, slight weathering to fresh, medium hard
5	29.8- 32.8	100	100	

	BORING B-04, I-275, STATION 55+05, 12 FEET RIGHT: BOX 1 OF 2							
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION				
1	15.7-20	70	100	CALCAREOUS SHALE, gray with tan, continuous, poor to excellent quality, 75 to 80 degree bedding,				
2	20-25	98	100	moderately weathering to fresh, medium hard				

	BORING B-04, I-275, STATION 55+05, 12 FEET RIGHT: BOX 2 OF 2							
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION				
3	25-30	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, slight weathering to				
4	30-33.3	100	100	fresh, medium hard				

	BORING B-05, I-275, STATION 55+40, 22 FEET LEFT: BOX 1 OF 3						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
1	14.4-14.8	0	75	CALCAREOUS SHALE, gray with tan, incompetent to			
2	14.8-19.8	70	96	continuous, very poor to fair quality, 75 to 80 degree			
3	19.8-24.8	56	90	bedding, moderate weathering to fresh, medium hard			

	BORING B-05, I-275, STATION 55+40, 22 FEET LEFT: BOX 2 OF 3						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
4	24.8- 29.8	90	100	CALCAREOUS SHALE, gray with tan, continuous, poor quality, 80 to 85 degree bedding, slight weathering to			
5	29.8- 34.8	84	100	fresh, medium hard			

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BO	RING B-0	5, I-275, STAT	ION 55+40, 22 FEET LEFT: BOX 3 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
6	34.8- 39.8	96	100	CALCAREOUS SHALE, gray with tan, continuous, excellent quality, 75 to 80 degree bedding, slight weathering to fresh, medium hard

	BO	RING B-	06, I-275, STA	TION 55+06, 22 FEET LEFT: BOX 1 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
1	17.6-19.6	40	90	CALCAREOUS SHALE, gray, continuous, poor to fair
2	19.6-24.6	100	100	quality, 75 to 80 degree bedding, moderate weathering
3	24.6-29.6	100	100	to fresh, medium hard

	BORING B-06, I-275, STATION 55+06, 22 FEET LEFT: BOX 2 OF 3											
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION								
3 (cont'd)	24.6- 29.6	100	100									
4	29.6- 34.6	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, fresh, medium hard								
5	34.6- 39.6	100	100									

BORING B-06, I-275, STATION 55+06, 22 FEET LEFT: BOX 3 OF 3								
RUNDEPTH (FT)RQD (%)RECOVERY (%)ROCK DESCRIPTION								
5 (cont'd)	34.6- 39.6	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, fresh, medium hard				

	BORING B-07, I-275, STATION 55+39, 75 FEET LEFT: BOX 1 OF 3									
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION						
1	24.4-29.5	67	90	CALCAREOUS SHALE, gray, continuous to fairly continuous, fair quality, 75 to 80 degree bedding, slightly						
2	29.5-34.5	60	88	weathering to fresh, medium hard						

	BORING B-07, I-275, STATION 55+39, 75 FEET LEFT: BOX 2 OF 3											
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION								
2 (cont'd)	29.5- 34.5	60	88	CALCAREOUS SHALE, gray, fairly continuous to								
3	34.5- 39.5	68	96	continuous, fair to excellent quality, 75 to 85 degree bedding, slightly weathering to fresh, medium hard								
4	39.5- 44.5	96	100									

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BORING B-07, I-275, STATION 55+39, 75 FEET LEFT: BOX 3 OF 3										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
4 (cont'd)	39.5- 44.5	96	100	CALCAREOUS SHALE, gray, continuous, excellent							
5	44.5- 49.5	100	100	quality, 80 to 85 degree bedding, slightly weathering to fresh, medium hard							

	BO	BORING B-08, I-275, STATION 55+04, 76 FEET LEFT: BOX 1 OF 3											
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION									
1	12.3-14.7	63	100	CALCAREOUS SHALE, gray, continuous, fair to good									
2	14.7-19.7	62	98	quality, 75 to 85 degree bedding, slightly weathering to									
3	19.7-24.7	76	92	fresh, medium hard									

	BO	RING B-0	8, I-275, STAT	ION 55+04, 76 FEET LEFT: BOX 2 OF 3			
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
3 (cont'd)	19.7- 24.7	76	92	CALCAREOUS SHALE, gray, continuous, good to			
4	24.7- 29.7	84	98	excellent quality, 75 to 85 degree bedding, slightly weathering to fresh, medium hard			
5	29.7- 34.7	88	100				

	BORING B-08, I-275, STATION 55+04, 76 FEET LEFT: BOX 3 OF 3										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
5 (cont'd)	29.7- 34.7	88	100	CALCAREOUS SHALE, gray, continuous, excellent							
6	34.7- 39.7	90	90	quality, 75 to 85 degree bedding, fresh, medium hard							

Appendix III

Laboratory Test Procedures

Laboratory Test Results

NATURAL MOISTURE AASHTO T 265

The moisture content of soils is an indicator of various physical properties, including strength and compressibility. Selected samples obtained during exploratory drilling were taken from their sealed containers. Each sample was weighed and then placed in an oven heated to $110^{\circ}C \pm 5^{\circ}C$. The sample remained in the oven until the free moisture had evaporated. The dried sample was removed from the oven, allowed to cool, and re-weighed. The moisture content was computed by dividing the weight of evaporated water by the weight of the dry sample. The results, expressed as a percent, are shown on the attached Laboratory Test Results Summary.

ATTERBERG LIMITS DETERMINATION AASHTO T89/T90

Representative samples were subjected to Atterberg limits testing to determine the soil's plasticity characteristics. The plasticity index (PI) is the range of moisture content over which the soil deforms as a plastic material. The liquid limit (LL) marks the transition from the plastic state to the liquid state. The plastic limit (PL) marks the transition from the plastic state to the solid state.

To determine the liquid limit, a soil specimen is wetted until it is in a viscous fluid state. A portion of this soil is then placed in a brass cup of standardized dimensions, and a groove made through the middle of the soil specimen with a grooving tool of standardized dimensions. The cup is attached to a cam that lifts the cup 10 mm, and then allows the cup to fall and strike a rubber base of standardized hardness. The cam is rotated at approximately 2 drops per second until the two halves of the soil specimen come in contact at the bottom of the groove along a distance of 13 mm. The number of blows required to make this degree of contact is recorded, and a portion of the specimen is subjected to a moisture content determination. Additional water is added to the remainder of the specimen, and the grooving process and cam action process repeated. This testing sequence is repeated until the soil flows as a heavy viscous fluid. The number of blows vs. moisture content is then plotted on semi-logarithmic graph paper, and the moisture content corresponding to 25 blows is designated the liquid limit.

The plastic limit is the lowest moisture content at which the soil is sufficiently plastic to be manually rolled into threads 3 mm in diameter. It is determined by taking a pat of soil remaining from the liquid limit test, and repeatedly rolling, kneading, and air drying the specimen until the soil breaks into threads approximately 3 mm in diameter and 3 to 10 mm long. The moisture content of these soil threads is then determined, and is designated the plastic limit. The results of these tests are presented on the Laboratory Test Results Summary.

GRAIN SIZE TEST PROCEDURES AASHTO T 88

The grain size distribution of soil particles is an indicator of certain physical properties including permeability, compaction characteristics, consolidation, shrinkage and swelling, liquefaction, and other engineering properties. For this project, grain size distribution of soils was needed to determine AASHTO classifications of the soil. The soil specimen is dried then passed through a series of nested sieves. The portion of soil retained on each sieve is weighted and the percent of the total sample retained is computed. The percent passing the number 200 sieve is provided on the Laboratory Test Results

Summary. Hydrometer analyses were also performed and grain size distribution curves were developed. The Particle Size Analysis of Soils test reports are included in this Appendix.

CONSOLIDATION TEST PROCEDURES AASHTO T 216

The consolidation test provides data for estimating the settlement and time rate of settlement of soil in response to structural loads. Eight representative undisturbed samples were selected for testing. A section of each sampling tube approximately 4 inches long was cut and the soil sample was extruded with a hydraulic ram. The cut section was trimmed into a disc 2.5 inches in diameter and 1 inch thick. The disc was confined around its perimeter by a stainless steel ring and on each end by porous stones. The sample was placed in the testing device and subjected to incrementally increasing vertical load. The resulting deformations were measured with a dial gauge accurate to 0.0001 inches. The test results are presented in graphical form, with pressure on the x-axis and void ratio on the y-axis, on the Consolidation Test Reports.

TRIAXIAL TEST AASHTO T 296

The triaxial test is used to determine the shear strength (cohesion) and internal angle of friction of cohesive and cohesionless soils. A section of the representative undisturbed samples approximately 6 inches long was extruded from the sampling tube. Each sample was encased in a rubber membrane and placed into the triaxial chamber. For unconsolidated undrained tests, the valve is closed and the pressure increase is measured during performance of the test. Axial loads are applied to the sample and load and deformation values are recorded at specific strain increments. The test results are provided on the Triaxial Shear Test Reports.

Boring	Mainline Station	Sample	Sample	e Content	Atterberg Limits		Grain Size	USCS	AASHTO	Specific	Unit	Unconsolidated Undrained Testing		
Number	Offset	Depth (ft)	Туре		PL	PI	Percent Finer than No. 200 Sieve	Class.	Class.	Gravity	(lb/ft ³)	φ	Shear Strength (psf)	
		1	SPT											
		3.5	SPT	4.2	31	17	14	34.3	SC	A-2-7	2.65			
B-01		6	SPT					Grain Size USCS AASHTO Specific Unit Undrained Testin Percent Class. Class. Gravity Ib/ft ³ Shear Finer than No. 200 Sieve Image: Class of the state of						
D-01		8.5	SPT											
		13.5	SPT											
		18.5	SPT											
		1	SPT											
B-09		3.5	SPT											
		6	SPT											
		8.5	SPT											
B-09		13.5	SPT											
2 00		18.5	SPT											
		20	UD											
B-01 B-09 B-10		22	UD	44.1	80	33	47	95.4	СН	A-7-5	2.848	110.6	0	1410
		24	SPT											
		28.5	SPT											
		1	SPT	7										
		2	SPT	22.1	10	22	24	75.5	CI	A 7 C	2.65			
		6 8.5	SPT SPT	24.7 16.9	46	22	24	/5.5	L	А-7-6	2.65			
B-10		8.5 13.5	SPT	203										
B-10		18.5	SPT	32.1										
		21	UD	52.1										
		23.5	SPT	30.7										
		28.5	SPT											

Boring	Mainline Station	Sample	le Sample	Natural Moisture	Atterberg Limits		Grain Size	USCS	AASHTO	Specific	Unit Weight	Unconsolidated Undrained Testing		
Number	Offset	Depth (ft)	Туре	Content (%)	u	PL	PI	Percent Finer than No. 200 Sieve	Class.	Class.	Gravity	(lb/ft ³)	ф	Shear Strength (psf)
		1	SPT	4										
		3.5	SPT	22										
		6	SPT	30.5										
		8.5	SPT	31.3										
		13.5	SPT	33.2										
B-11		18.5	SPT	40.5										
		20	UD	36.9	55	28	27	81.1	СН	A-7-6	2.75	119.8	0	1990
		23.5	SPT	37.7										
		28.5	SPT	709										
		33.5	SPT	64.3										
		38.5	SPT											

Form No: TR-D2216-T265-1 Revision No. 1 Revision Date: 08/16/17

LABORATORY DETERMINATION OF WATER CONTENT

	8
Ц	

Quality AssuranceASTM D 2216AASHTO T 265												
		S&ME, In	c Knoxv	ville: 1413 To	pside Road, L	ouisville, TN 3.	7777					
Project #	t: 2243	30250				Report D	Date:	2/10/2023				
Project N	Name: I-27	5 Over Elm Str	eet			Test Dat	:e(s): 1/	26-29/2023				
	Client Name: HDR											
	Client Address: 120 Brentwood Commons Way, Suite 525, Brentwood, TN											
	Sampled by: S&ME, Inc. Sample Date(s): 12/12-21/2022											
Sampling Method: Split Spoon Log # : 43-3763												
Metho	od: A (1%	6)	B (0.1)	%)	Balance ID. Oven ID.	18435 12872	Calibration Date: 2/18/20 Calibration Date: 7/21/20					
Boring	Sample	Sample	Tare #	Tare Weight	Tare Wt.+	Tare Wt. +	Water	Percent	N			
No.	No.	Depth			Wet Wt	Dry Wt	Weight	Moisture	o t			
		ft		grams	grams	grams	grams	%	e			
B-01	SS-02	3.50	N5	31.44	81.28	79.29	1.99	4.2%				
B-10	SS-01	1.00	412	24.95	168.77	159.40	9.37	7.0%				
B-10	SS-02	3.50	406	25.15	129.25	110.41	18.84	22.1%				
B-10	SS-03	6.00	C-21	30.39	75.04	66.21	8.83	24.7%				
B-10	SS-04	8.50	421	25.23	179.31	157.05	22.26	16.9%				
B-10	SS-05	13.50	400	24.76	178.08	152.22	25.86	20.3%				
B-10	SS-06	18.50	410	25.22	203.75	160.35	43.40	32.1%				
B-10	SS-07	23.50	10-7	183.53	396.55	346.53	50.02	30.7%				
B-11	SS-01	1.00	434	25.12	184.81	178.69	6.12	4.0%				
B-11	SS-02	3.50	413	34.39	234.31	198.31	36.00	22.0%				
B-11	SS-03	6.00	418	25.02	189.49	151.06	38.43	30.5%				
B-11	SS-04	8.50	423	24.75	190.58	151.02	39.56	31.3%				
B-11	SS-05	13.50	445	25.21	159.97	126.41	33.56	33.2%				
B-11	SS-06	18.50	407	25.18	155.19	117.71	37.48	40.5%				
B-11	SS-07	23.50	Lee-B	33.04	201.48	155.92	45.56	37.1%				
B-11	SS-08	28.50	LP-1	42.74	282.28	182.94	99.34	70.9%				
B-11	SS-09	33.50	ЗK	40.29	230.43	156.01	74.42	64.3%				

Notes / Deviations / References

AASHTO T265: Laboratory Determination of Moisture Content of Soil

Kim Gonzalez Technician Name

Lindsey Deskins Technical Responsibility

<u>Kindsey Desterns</u> Signature

Lab Services Manager Position Date <u>2/10/2023</u>

1/27/2023

Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

PARTICLE SIZE ANALYSIS OF SOIL

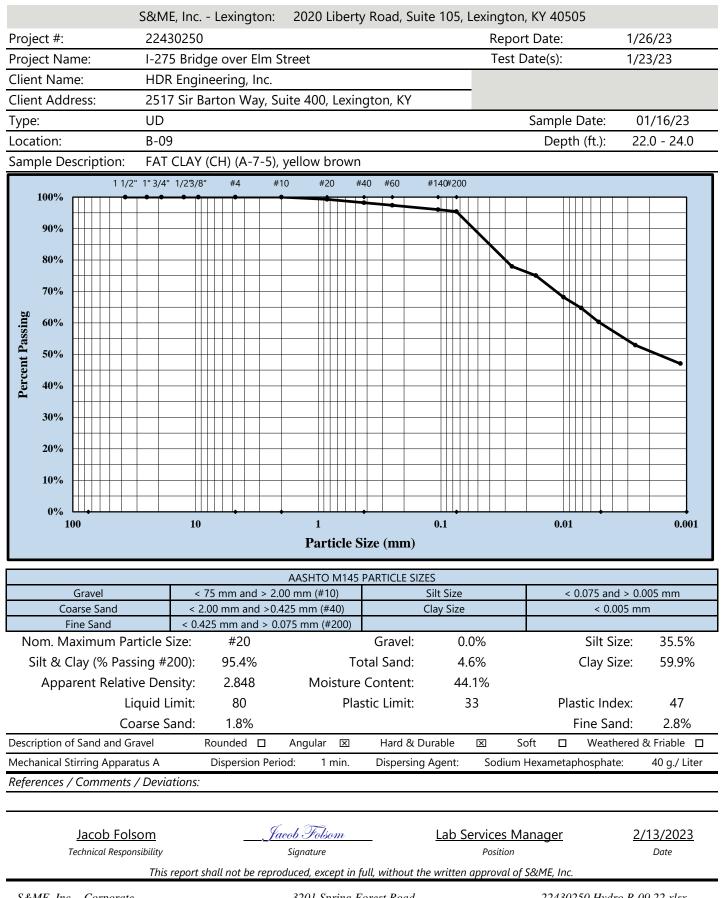
Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

Log No. 43-3763	AASHTO T 88				
	S&ME, Inc Knoxville: 1413 Topside Road, Louisville,	TN 37777			
S&ME Project #: 2	22430250	Report Date:	2/10/2023		
Project Name: I	I-275 Over Elm Street	Test Date(s):	1/31/2023		
Client Name:	HDR				
Address: 1	120 Brentwood Commons Way, Suite 525, Brentwood, TN				
Sample ID: E	B-01 Sample #: SS-02	Sample Date:	12/21/22		
Location: E	Boreholes	Depth:	3.50 ft		
Sample Description:	CLAYEY SAND WITH GRAVEL (SC), gray		A-2-7		
	"3/4" 1/2" 3/8" #4 #10 #20 #40 #60 #140 #200				
100%					
90%	INNIIII				
80%					
70%					
bercent Passin 60%					
a 50%					
eet					
2 40%					
30%		×			
20%					
10%					
0%					
100	10 1 0.1 Particle Size (mm)	0.01	0.001		
	Fine Sand	< 0.425 mm and	L > 0.075 mm (#200		
Gravel	<pre></pre> < 75 mm and > 2.00 mm (#10) Silt		< 0.425 mm and > 0.075 mm (#200 < 0.075 and > 0.002 mm		
Coarse Sand	< 2.00 mm and > 0.425 mm (#40) Clay				
Maximum Partic	cle Size: 1/2 in Gravel: 26.8%		Silt 25.1%		
Silt & Clay (% Passing			Sint 25.1% Clay 9.2%		
Assumed Specific	5	(Jay 5.270		
•	uid Limit 31 Plastic Limit 17	Plastic In	dex 14		
•	se Sand: 29.6%	Fine Sa			
Description of Sand and Grave			hered & Friable		
Mechanical Stirring Apparatus		dium Hexametaphospha			
References / Comments / L		alum nexametaphospha	te. 40 g./ Elter		
<u>Victoria Igo</u> Technical Responsib	e Vertonia lare Associate Pre	oject Manager	<u>2/10/2023</u> Date		
	vility Signature Pos This report shall not be reproduced, except in full, without the written appro		Date		

3201 Spring Forest Road Raleigh, NC. 27616 T 88 GS w Hydro (B-01, SS-02, 3.50 ft).xlsx Page 1 of 1 Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Quality A	ssurance AST	M D4318		AASHTO	т 89 🛙		SHTO T 90	\mathbf{X}			
	S	&ME, In	c Knoxv	ville: 14	13 Topsid	le Road, L	ouisville,	TN 3777	7		
S&ME, Inc Knoxville: 1413 Topside Road, Louisville, TM Project #: 22430250						Report Date:		2/10/2023			
Project N			root					Test Da		1/30/20	
Client Na			eei					Test Da	ate(3)	1/30/20	525
							T N 1				
Client Ac		wood Co				entwood,					
Boring #			Samp	ole #: SS-0)2		Sam	•	: 12/21/20	22	
Log #:	43-3763							Depth	: 3.50 ft		
Descript				TH GRAV							
	Specification	S&ME IL		Cal Date:		and Speci	ification	S8	S&ME ID # Cal Da		
Balance (1843		2/18/2022		oving tool			16015		/2022
LL Appara	atus	18414		8/10/2022		40 Sieve			31697	9/16	/2022
Oven	1	12872	2	7/21/2022							
Pan #		Tare #:	15	5	24	d Limit	1	1	A2	Plastic Limi	t
		Tale #.		15.29	15.33				A2 15.87		
A	Tare Weight		15.26								
В	Wet Soil Weight + A		29.74	30.72	31.45				24.09		
C	Dry Soil Weight + A		26.40	27.00	27.50				22.90		
D	D Water Weight (B-C)		3.34	3.72	3.95				1.19		
E	E Dry Soil Weight (C-A)		11.14	11.71	12.17				7.03		
F	F % Moisture (D/E)*100		30.0%	31.8%	32.5%				16.9%		
Ν	N # OF DROPS		33	25	18				Moisture C	ontents det	ermined by
LL	LL = F * FACTO	DR						AASHTO T 265			
Ave.	Average						•			16.9%	
									One Point I	Liquid Lim	it
	5.0							Ν	Factor	Ν	Factor
	4.0							20	0.974	26	1.005
	3.0							21	0.979	27	1.009
Content 33	2.0		•					22	0.985	28	1.014
	1.0		$ \rightarrow $					23 24	0.99 0.995	29 30	1.018 1.022
	0.0		+	●				24	1.000	30	1.022
2 isti	9.0								NP, Non-Pl	astic	
Moist 5	8.0								Liquid L		:1
א ^{2′}	7.0								Plastic L		7
	6.0								Plastic Ir		_
											4
25.0 Group Symbol CL											
Wet Preparation Dry Preparation Image: Air Dried Image: Air Dried											
				Air Dri		10	lion order				
Notes / D	eviations / References:	Gro	սի շնար	of is for r		. 40 por	tion only.	•			


AASHTO T90: Determining the Plastic Lin	nit & Plastic Index of Soils	AASHTO T89: Determining the Liquid Limit of Soils					
<u>Kim Gonzalez</u> Technician Name	<u>1/31/2023</u> Date	Lindsey Deskins Technical Responsibility	<u>2/10/2023</u> Date				
This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.							

3201 Spring Forest Road Raleigh, NC. 27616 AASHTO T89-T90 (B-01, SS-02, 3.50 ft) .xlsx Page 1 of 1 Form No. TR-D422-2 **Revision No. 2LEXdAASHTO** Revision Date: 01/30/23

PARTICLE SIZE ANALYSIS OF SOIL

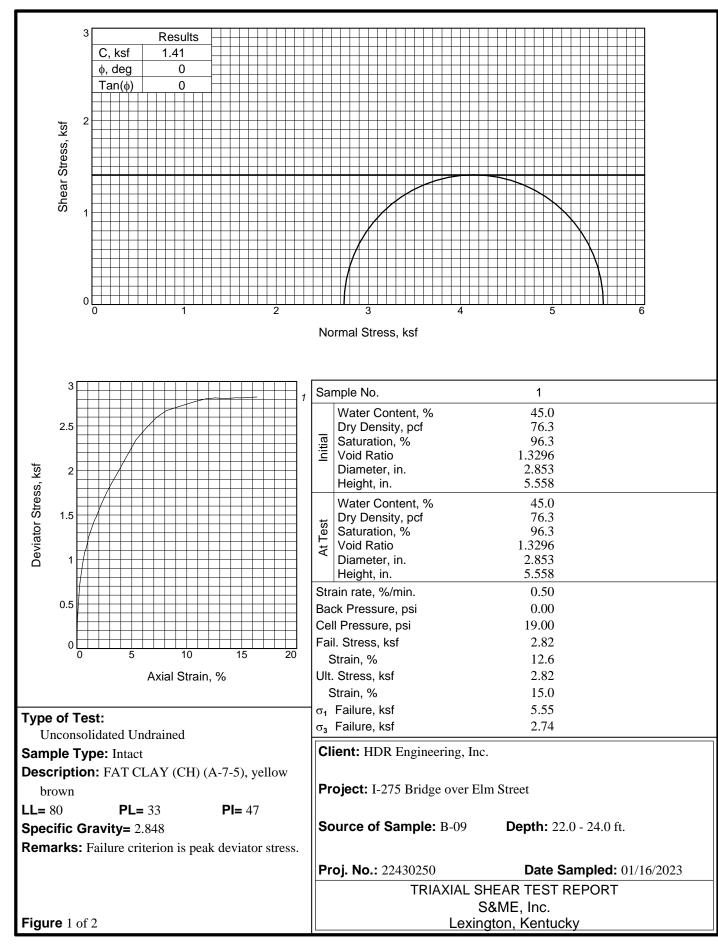
AASHTO T88

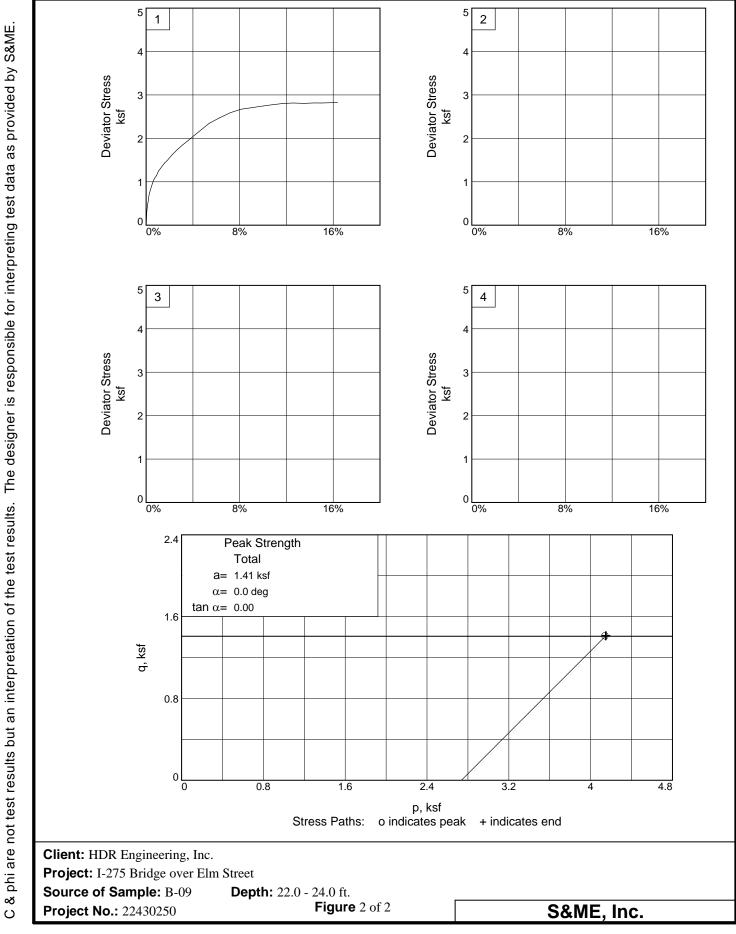
S&ME, Inc. - Corporate

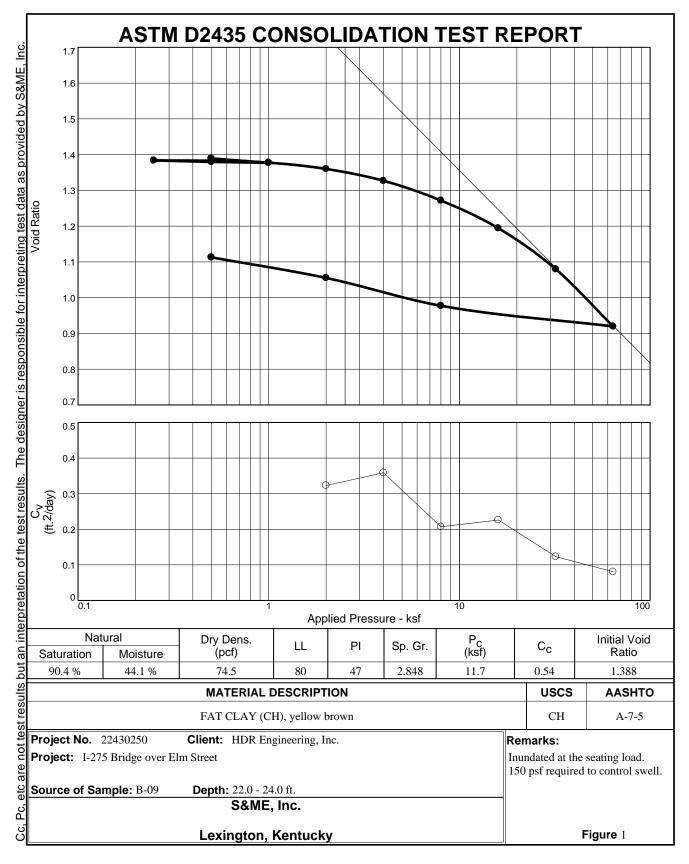
3201 Spring Forest Road Raleigh, NC. 27616

22430250 Hydro B-09 22.xlsx Page 1 of 1

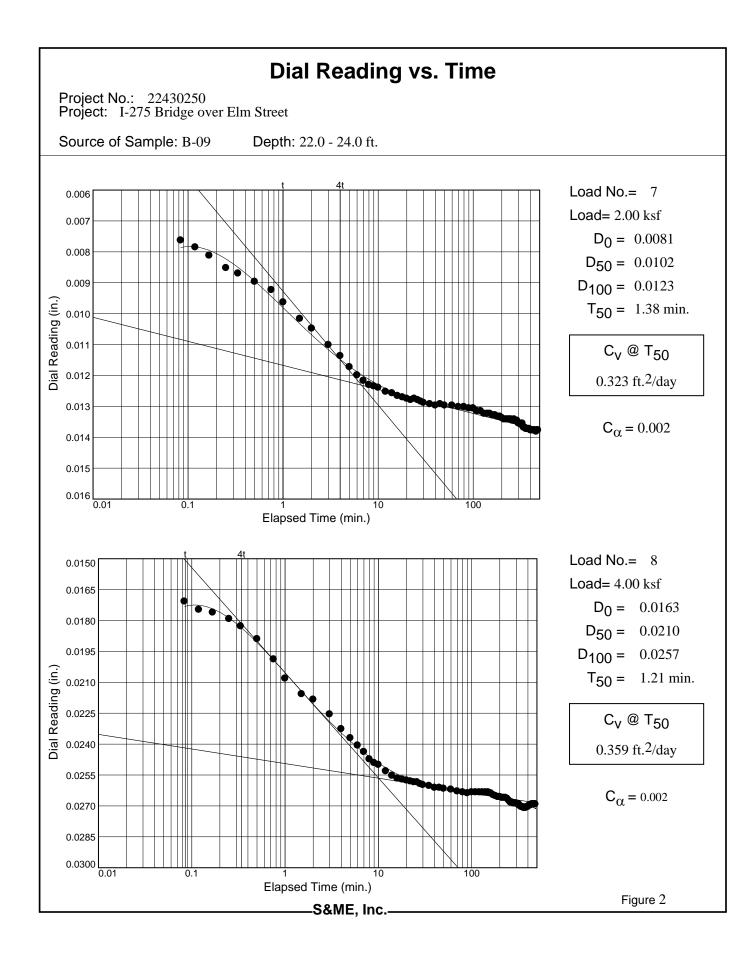
Form No. TR-D4318-T89-90 Revision No. 1 LEXb Revision Date: 05/16/22

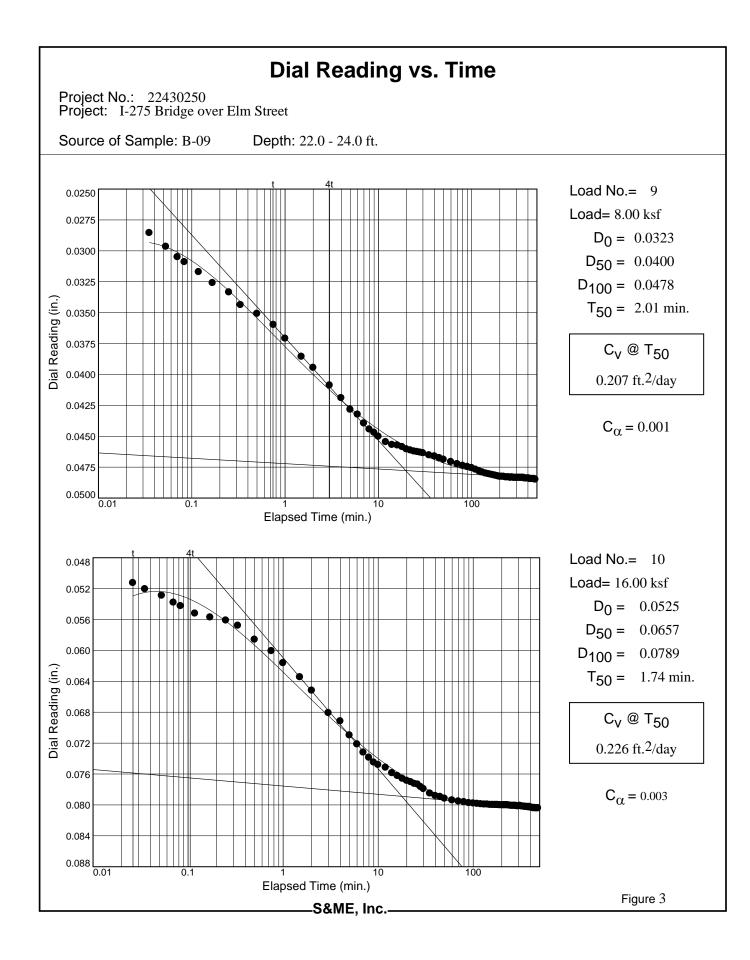

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

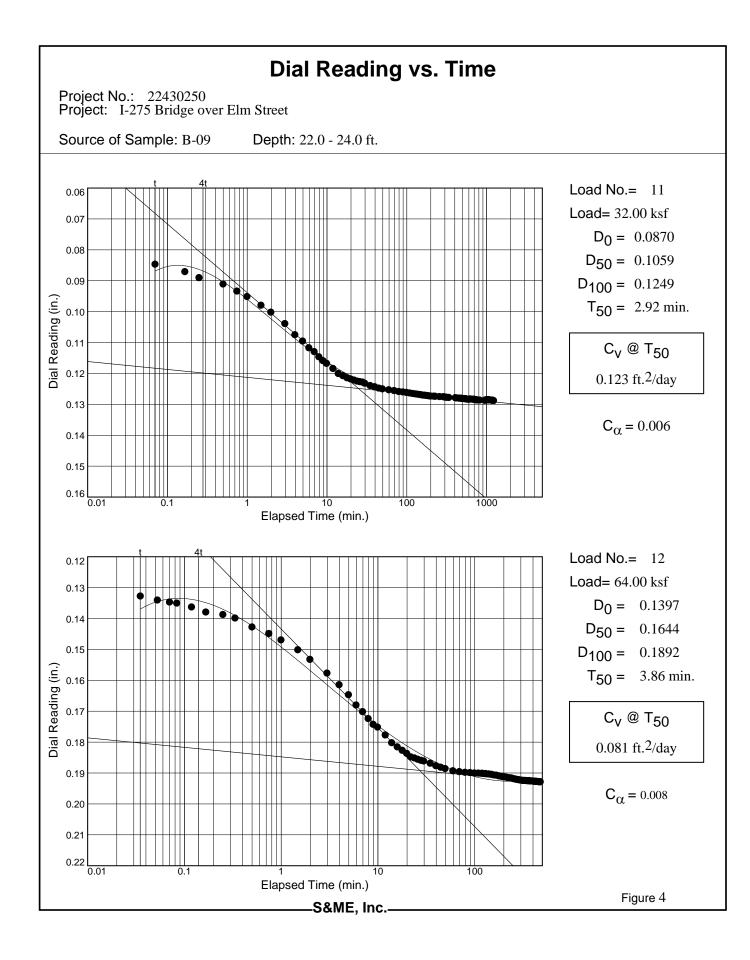

		S&ME, Inc.	- Lexin	igton:	2020 Li	berty Roa	ad, Suite	105, Lexi	ngton, KY	40505		
Project #: 22430250				- <u>_</u> , ,				Report Date:		04/13/23		
Project N		I-275 Bridge o	ver Elm	۱ Stree	et				t Date(s)		01/23/23	
Client Na	ame:	HDR Engineeri	ng, Inc									
Client Ac	ddress:	2517 Sir Bartor	n Way,	STE 4	00, Lexing	ton, KY						
								S	Sample Da	ate:	01/26/	23
ocation	n:	B-09							Depth (ft):		22.0 - 2	24.0
ample D	escription:	FAT CLAY (CH)			ow brown							
	Specificatio		1E ID #		Cal Date:		and Spec	ification		&ME ID #		Date:
alance	-	-	2707		01/19/22	Groc	ving tool		20	22.12.22A	12/2	22/22
L Appara			3653		01/04/23							
)ven (bro	own)	24	4438		10/25/22	Liquic	l Limit				Plastic Limi	t
			_			Liquid						
А	Tare Weig	ht	•	16.89	16.79	16.93				16.75	16.44	
В	Wet Soil V	/eight + A	ź	26.02	24.15	26.17				22.80	22.72	
С	Dry Soil W	eight + A	2	21.98	20.81	21.94				21.30	21.16	
D				4.04	3.34	4.23				1.50	1.56	
E	Dry Soil Weight (C-A)			5.09	4.02	5.01				4.55	4.72	
F	% Moisture (D/E)*100		7	'9.4%	83.1%	84.4%				33.0%	33.1%	
Ν	# OF DROPS			26	20	18				Moisture C	ontents det	ermined
LL	LL :	= F * Factor								A	STM D 221	6
Ave.		Average				#DI	V/0!				33.1%	
8	5.0 т									One Point I		
0									N	Factor	N	Facto
8	3.0								20 21	0.974 0.979	26 27	1.00
ت ت	13.0								21	0.979	28	1.00
ture Content									23	0.99	29	1.01
Ŭ Ŭ	51.0								24	0.995	30	1.022
Jing			∖						25	1.000		
io 7	/9.0			-		_				NP, Non-Pl	astic	
% Moist										Liquid L		30
× 7	7.0									•		_
										Plastic L		33
										Plastic Ir		17
7	/5.0 10	15		- 20	25 40	-+ <u>-</u> +	*_*	100		Group Syn		H*
	10	15 20	25	30	35 40	# of I	Drops	100	1	Multipoint N	/lethod	X
										Dne-point N	/lethod	
					A . D .	1 5	K Fs		tained and			
Wet Pre	eparation	Dry Prepa	aration	X	Air Drie	a n	ES ES	t. the % re	tainea on t	the #40 Siev	re: <5%)


A. Harrod/JL Supervising	<u>1/20/2023</u>	Jacob Folsom	<u>4/13/2023</u>					
Technician Name	Date	Technical Responsibility	Date					
This report shall not be reproduced, except in full, without the written approval of S&ME. Inc.								

3201 Spring Forest Road Raleigh, NC. 27616 The designer is responsible for interpreting test data as provided by S&ME. & phi are not test results but an interpretation of the test results. C


Checked By: <u>J. Folsom 01/31/2023</u>





Tested By: J. LaMothe

Checked By: J. Folsom 01/31/2023

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

Log I	No. 4	3-376	63									A	ASF	ITO	Т 88	3												
								Inc	K	noxv	ville:	14	413	Тор	side	Road	d, Lo	ouis	ville,									
	1E Pro	-	#:			302															ort [2023	
	ect Na					'5 O	ver	Elm	n Str	eet									_	Tes	t Da	te(s):		1,	/31/	2023	
	nt Nan	ne:			HDF														_									
Addr							two	od C	Comn	nons						ood, T	N											
	ple ID	:			B-1(S	Sam	ple	#: S	S-03						Sam	•					/12/2	
	tion:				Bore	ehol																[Dep	oth:			.00 ft	
Sam	ple De	escrip								AY W	/ITH	GR/	٩VE	L (C	L), ye	ellowi	ish k	orov	vn							4	\-7-6	
	100%		1	1.5" 1	'' 3/4''	1/2''	3/8"	i	#4	#1	10	#2	20	#40	#60	#	140	#200	I									
	100%				\square	$\overline{}$																						
	90%				+	<u> </u>		+							_													-
		$\left + + + \right $													+	_							+	+				
	80%														-		-											
	70%																		\rightarrow									
5.0		+++			+										_									+				-
Percent Passing	60%														+							X						
Pas	50%																						N					
ent	2070				_										_									N				-
erc	40%	$\left \right \right $			+		+++					++		++		-		++					++	$\left \right $				-
H	200/														-								+				$\overline{}$	
	30%																											
	20%				_										_													_
		$\left \right + + $			_		+++					++		++	+								+	+				-
	10%														-								+					
	0%								•																			
	1	.00				1	10					1 Par	ticle	e Siz	ze (n	m)	0.1					0.01	L				0.	.001
					_											, 	ine S	and				125			d s l	0.07	5 mm (#200
		Grave	el				< 75	5 mn	n and	d > 2.0	00 mr	n (#'	10)			F	Silt)2 mm	
	Co	barse S	Sand			<				d > 0.							Cla	у								! mm		
	N.A.	- vina		Douti				<u>ר</u>	/ / .im						Cro	رمان		10	60/						cil	+	39.0	10/
C:				Parti					/4 in						Grav al Sa				.6%						Sil		36.5	
21	ilt & C				5				5.5%			N/ -							9% .7%						Cla	у	50.5	070
	ASS	umeo	ı sp	ecific		-			.650			IVIC			Cont							ы					2	
				•		Limi			46				F	last	ic Li	nit		2	22						nde		24	
		((Coar		and			.6%		•										6				and		5.3	
	iption o								ded			gular				d & Di			×		oft						Friable	
	anical S	-				ation		-		n Peri			min.		-	ersing	Ager	IT:	20	dium	нехаг	neta	pnc	sph	ate:		40 g./	Liter
rejer	ences ,	/ Con	intel	115 / 1	Jevli	ullor	15.	ŀ	-H2L	ITO 1	00,	1 09	, i 9	υ, Ιν	145													
				<mark>a Igo</mark> sponsib						Ya	Sign	ature	Zo	e		A	\SSO	ciat		oject	Man	age	<u>er</u>			<u>2/1</u>	0/202 Date	23

3201 Spring Forest Road Raleigh, NC. 27616 T 88 GS w Hydro (B-10, SS-03, 6.00 ft).xlsx Page 1 of 1 Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Quality A	Assurance	ASTM D4318		AASHTO	т 89 [X AAS	SHTO T 90	\mathbf{X}			
_		S&ME, In	c Knoxv	ville: 14	13 Topsic	le Road, L	ouisville,	TN 3777	7		
Project	#: 22430					•	,	Report		2/10/2	023
Project		Over Elm Sti	reet					Test Da		1/30/2	
Client N		0.00 200 000								.,	
		rentwood Co	ommons	Wav. Suite	e 525. Bre	entwood.	TN	-			
Boring				ole #: SS-C				nle Date	: 12/12/20	22	
Log #:	43-3763		Sump		,5		541		: 6.00 ft		
Descrip		I FAN CL	AY WITH	GRAVEL (CL), vello	wish brov	vn	Deptii	. 0.00 11		
	d Specification	S&ME IL		Cal Date:		and Speci		SE	ME ID #	Cal	Date:
Balance	•	1843	5	2/18/2022		oving tool			16015	8/15	/2022
LL Appai	ratus	18414	4	8/10/2022	No.	40 Sieve			31697	9/16	5/2022
Oven		12872	2	7/21/2022							
Pan	#	T	14	20	-	d Limit		r		Plastic Lim	it
_	Taua Maialat	Tare #:	14	20 15.35	10				1		
A	Tare Weight		15.39		15.34				15.25		
B	Wet Soil Weight		29.82	31.33	31.45				23.85		
C	Dry Soil Weight		25.40	26.20	26.10				22.30		
D	Water Weight (B		4.42	5.13	5.35				1.55		-
E	Dry Soil Weight (10.01	10.85	10.76				7.05		
F	% Moisture (D/E))*100	44.2%	47.3%	49.7%				22.0%		
N	# OF DROPS		30	23	15				Moisture Co		-
LL	LL = F * F/	ACTOR							AA	ASHTO T 2	55
Ave.	Avera	ge						•		22.0%	
	52.0 T								One Point L		
	51.0							N 20	Factor 0.974	N 26	Factor 1.005
	50.0							20	0.979	27	1.009
ent	49.0	\searrow						22	0.985	28	1.014
Content	48.0							23	0.99	29	1.018
	47.0	\•						24	0.995	30	1.022
stu	46.0							25	1.000	1 -	
ē	45.0								NP, Non-Pl		
8	44.0		_						Liquid L		46
	43.0								Plastic L		22
	42.0								Plastic In Group Sym		24 CL
	10 15	5 20	25 30	35 40	# of	Drops	100		Group Sym Aultipoint N		
	y = -7.716ln(x) +								Dne-point N		
Wet Pr	reparation	Dry Preparat	ion 🔽	Air Drie	ed 🗸					ictiou	
	Deviations / Referen			ol is for r		. 40 port	ion only	•			
							- 7				

AASHTO T90: Determining the Plastic Lir	nit & Plastic Index of Soils	AASHTO T89: Determining the Liquid Limit of So							
Kim Gonzalez Technician Name	<u>1/31/2023</u> Date	Lindsey Deskins Technical Responsibility	<u>2/10/2023</u> Date						
This report shall	This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.								

3201 Spring Forest Road Raleigh, NC. 27616 AASHTO T89-T90 (B-10, SS-03, 6.00 ft) .xlsx Page 1 of 1

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

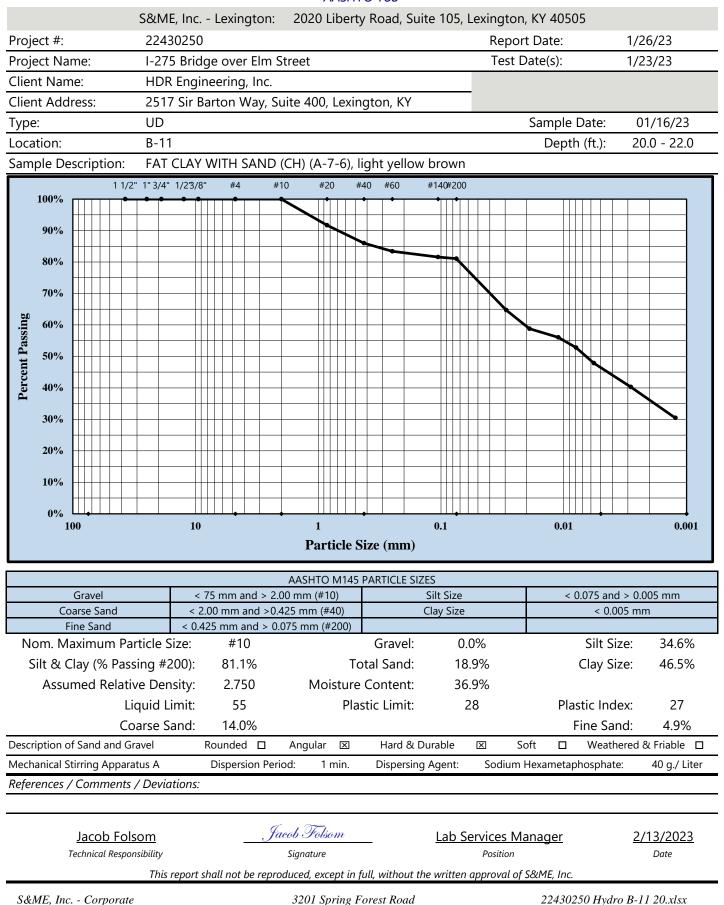
2091	No. 4	5 57	0.0			S	8N	1E. I	nc.	. – k	۲no	ville	<u>.</u>				<i>T 88</i> side	Roac	I. Lo	ouis	sville	e. Tľ	N 37	7777							
5&M	IE Pro	iect ;	#:		22	2430			iie.			(me				ops			.,	Juit	,,,,,,			ort D		:		2/1	10/2	023	
	ect Na		-			275			ר S	tree	et													Dat						023	
	nt Nan					DR			-																. ,			, -	,		
ddr	ress:				12	0 Br	entv	woo	d C	om	mon	s Wa	iy, Sι	uite !	525	, Bre	entwo	od, T	N		-										
am	ple ID	:			B-	10							Sai	mpl	e #	: SS	5-7							Sam	ple	Da	te:		12/	12/2	2
oca	tion:				Вс	oreh	nole	es																	D	ep	th:		23.	50 ft	
am	ple De	escrip	otio	n:				FA	ТC	:LA	Y W	ITH	GR/	٩VE	L (CH),	, red	dish	brc	wn									Α-	7-6	
	1000/			1.5"	1" 3	/4'' 1	/2''	3/8''	\$	#4		#10		#20		#40	#60	#	140	#20	0										
	100%			•	•	•	1			•		1					+														
	90%			+-					\setminus	\checkmark	_	_			_		_														
	000/			-								+-		-	-																
	80%																				`										
	70%			_							_	_					_							~			_				
සු		$\left \right $		+											+		+								╊						
ssin	60%																														
t Pa	50%											_			_		_												\checkmark		
Percent Passing		$\left \right $										_			-										+						
Per	40%																														
	30%																														
		$\left \right \right $	++	+							_				+		+			++-			_		+		-				ł
	20%														+																
	10%																														
											_	_			-										+						·
	0% 1	∟⊥ ₊ ∟ 00		_			1	0		•		+	1	1		L.	_		0.1			1 1			0.01		+			0.0	↓ 001
													Pa	rtio	cle	Size	e (m	m)													
							_											C;	no (land				< 0	49E				075	mm (†	420
		Grav	el					< 75	mn	n an	id > 2	2.00 r	nm ((#10))			FI	Sil	Sand It	1			< 0.						<u>mm (#</u> ! mm	·20
	Co	arse	Sano	4								0.425				_			Cla	ay							< 0.	002 r	nm		
	N.A.	axim	um	Dav	rticle	a Ci-	70.		1	/2 i	n						Grav	ما		10	5.4%	<u></u>						Silt		30.4	0/_
si	ilt & C									9.89					т		l Sar				.470 .8%						(Clay		49.4	
5		ume			-					.650			N	Inic			onte				.0 <i>%</i>).7%							lay		49.4	70
	A330	annev	5		iqui		-			.05. 95	0		1	1013			c Lin				39	J			Pla	acti	c In	dex		56	
					arse					.4%	<u></u>					asti		ii c										and:		3.5%	
escri	iption c	of San	d ar							ded		А	ngul	ar	X		Harc	1 & Di	ırab	le	X		So	ft					d & F	riable	
	anical S											eriod:		1 m				rsing						lexam						0 g./ L	
	ences ,		-				ion					T 88					-	5	5								•			5.	_
		\ <i>!</i>									\mathcal{V}	A	nu			e								4					- /4 C		
		<u>VIC</u> Technic		<u>ia lo</u>	-	tı z					14		gnatu	A	-	~		<u>A</u>	SSC	cia		' roje Positio		Mana	ige	<u>r'</u>		4)/202 Date	3
		ecnnil	ui R	espor		-							6											S&ME					L	ule	

3201 Spring Forest Road Raleigh, NC. 27616 T 88 GS w Hydro (B-10, SS-07, 23.50 ft).xlsx Page 1 of 1 Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Quality	Assurance	ASTM D	4318		AASHTO	т 89 [X AAS	БНТО Т 90	\boxtimes			
-		S&N	IE, Ind	c Knox	ville: 14	13 Topsic	le Road, L	ouisville,	TN 3777	7		
Project	#:	22430250	,					,	Report		2/10/2	023
		I-275 Over Eli	n Str	eet					Test Da		1/28/2	
Client N		HDR									.,,_	
	Address:	120 Brentwoo	od Co	mmons	Way, Suite	e 525, Bre	entwood, ⁻	TN	_			
Boring					ole #: SS-0		,		ple Date	: 12/12/20	22	
Log #:	43-3			1		- -			•	23.50 ft		
Descrip			CLA۱	WITH C	GRAVEL (C	H), reddis	sh brown					
	d Specificatio		ME ID		Cal Date:	-	e and Specif	fication	Sð	xME ID #	Cal	Date:
Balance	(0.01 g)		18435		2/18/2022		oving tool			16015		5/2022
LL Appa	iratus		18414		8/10/2022		40 Sieve			31697	9/16	5/2022
Oven Pan			12872		7/21/2022		-1 1 i i4					14
Pan	1#	Tare	ے #·	4	12	B4	d Limit			22	Plastic Lim	
A	Tare Weig			15.37	15.49	15.64				15.35		1
B		Veight + A		29.29	30.07	31.04				23.93		+
C		/eight + A		22.59	22.94	23.35			<u> </u>	21.52		+
D	Water We	5		6.70	7.13	7.69				2.41		
E		Veight (C-A)		7.22	7.45	7.71				6.17		+
F	-	re (D/E)*100		92.8%	95.7%	99.7%				39.1%		+
N	# OF DRC			29	23	17					ontents de	termined by
LL	_	= F * FACTOR									ASHTO T 2	-
Ave.		Average									39.1%	
		5								One Point I	_iquid Lin	nit
1	104.0								N	Factor	Ν	Factor
									20	0.974	26	1.005
	102.0								21	0.979	27	1.009
l lei 1	100.0								22 23	0.985	28	1.014
Co		-+							23	0.99 0.995	29 30	1.018
ure Content	98.0								24	1.000	50	1.022
	96.0		\rightarrow					- 1		NP, Non-Pl	astic	
% Moist	94.0									Liquid L		95
										Plastic L	.imit	39
	92.0									Plastic Ir	ndex	56
	90.0							100	(Group Syn	nbol	сн
	10	15 2	0	25 30	35 40	# of]	Drops	100	Ν	/ultipoint N	/lethod	\checkmark
	y = -12.93	ln(x) + 136.32							(Dne-point N	/lethod	
	reparation	Dry Pre			Air Drie							
Notes /	Deviations /	References:	Grou	ıp symb	ol is for r	ninus No	o. 40 port	ion only	•			

AASHTO T90: Determining the Plastic Lim	it & Plastic Index of Soils	AASHTO T89: Determini	ng the Liquid Limit of Soils						
<u>Kim Gonzalez</u> Technician Name	<u>1/2/2023</u> Date	Lindsey Deskins Technical Responsibility	<u>2/10/2023</u> Date						
This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.									


3201 Spring Forest Road Raleigh, NC. 27616 AASHTO T89-T90 (B-10, SS-07, 23.50 ft) .xlsx Page 1 of 1 Form No. TR-D422-2 Revision No. 2LEXdAASHTO Revision Date: 01/30/23

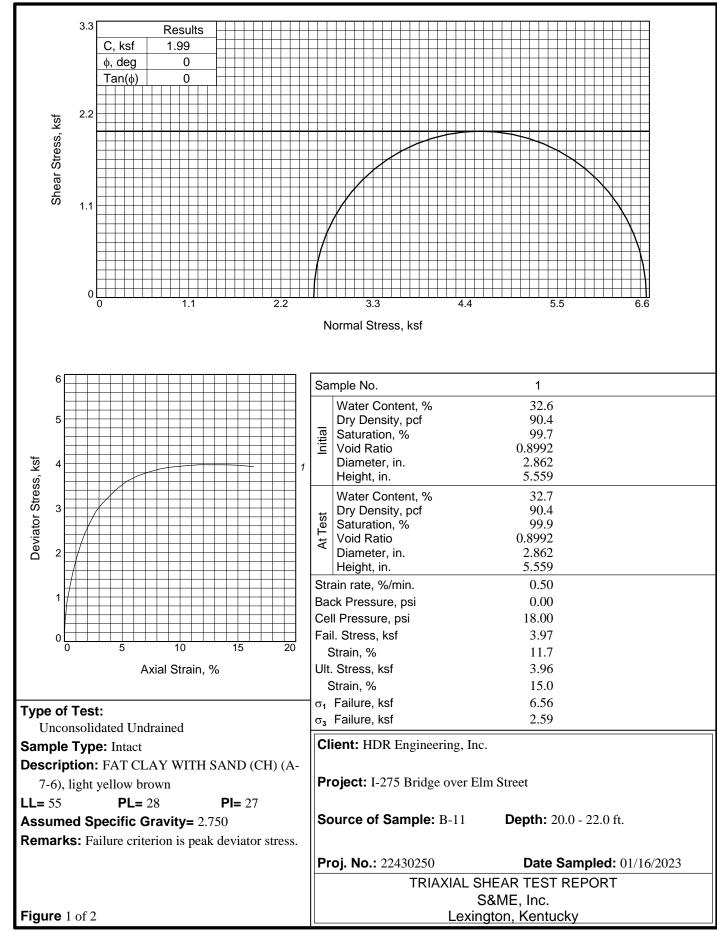
PARTICLE SIZE ANALYSIS OF SOIL

Page 1 of 1

AASHTO T88

Raleigh, NC. 27616

Form No. TR-D4318-T89-90 Revision No. 1 LEXb Revision Date: 05/16/22


LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

	AS	STM D 4318	\mathbf{X}	AASHTO	т 89 🛛 🗖	AA [SHTO T 9	0 🗆			
	S&N	/IE, Inc Le	xington:	2020 Li	berty Roa	d, Suite	105, Lexi	ngton, KY	40505		
Project #:	224302	50					Re	port Date:		04/13/	23
Project Nan	ne: I-275 B	ridge over l	Elm Stree	et			Tes	st Date(s)		01/23/	23
lient Name	e: HDR En	ngineering,	lnc.								
lient Addre	ess: 2517 Si	r Barton W	ay, STE 4	00, Lexing	ton, KY						
							5	Sample Da	ate:	01/26/	23
ocation:	B-11							Depth (ft	:):	20.0 - 2	2.0
ample Descr	ription: FAT CL	AY WITH SA	AND (CH)) (A-7-6), l	ight yello	w brown	1				
ype and Spe	ecification	S&ME ID)#	Cal Date:	Туре	and Speci	ification	SE	&ME ID #	Cal I	Date:
alance (0.0	-	32707		01/19/22	Groo	ving tool		202	22.12.22A	12/2	2/22
_ Apparatus		33653		01/04/23							
ven (brown)	24438	3	10/25/22	I	Lineit					
					Liquid	Limit				Plastic Limi	l
A Tai	re Weight		16.86	16.45	15.18				15.97	16.33	
	et Soil Weight +	Δ	25.99	24.78	23.18				22.43	22.58	
	y Soil Weight +		22.85	21.83	20.28				21.03	21.22	
	ater Weight (B-C		3.14	2.95	2.90			+	1.40	1.36	
	-										
	y Soil Weight (C		5.99	5.38	5.10				5.06	4.89	
	Moisture (D/E)*	100	52.4%	54.8%	56.9%				27.7%	27.8%	
	DF DROPS		32	27	22				Moisture C	ontents dete STM D 221	
LL									~	-	0
Ave.	Average	2			#UN	// U1			One Point I	27.8%	:+
60.0	r r							N	Factor	<u>-iquid Lim</u> N	Facto
								20	0.974	26	1.00
58.0	╂───┼							21	0.979	27	1.00
Content Content								22	0.985	28	1.01
56.0	↓ →							23	0.99	29	1.01
ture (24	0.995	30	1.02
								25	1.000		
% Woist			N						NP, Non-Pl		
%)						Liquid L	imit 5	5
52.0									Plastic L	imit 2	.8
									Plastic Ir	ndex 2	27
50.0			+ $+$						Group Syn	nbol C	H*
1	10 15	20	25 30	35 40	# of D	rops	100		Aultipoint N		X
									Dne-point N		
Wet Prepar	ration 🛛 🛛	Dry Preparati	on 🗵	Air Drie	ed 🗵	E Est	t. the % re	etained on t	the #40 Siev	re: 20%	

A. Harrod/JL Supervising1/20/2023Jacob Folsom4/13/2023Technician NameDateTechnical ResponsibilityDateThis report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC. 27616 The designer is responsible for interpreting test data as provided by S&ME. & phi are not test results but an interpretation of the test results. C

Checked By: <u>J. Folsom 01/31/2023</u>

C & phi are not test results but an interpretation of the test results. The designer is responsible for interpreting test data as provided by S&ME.

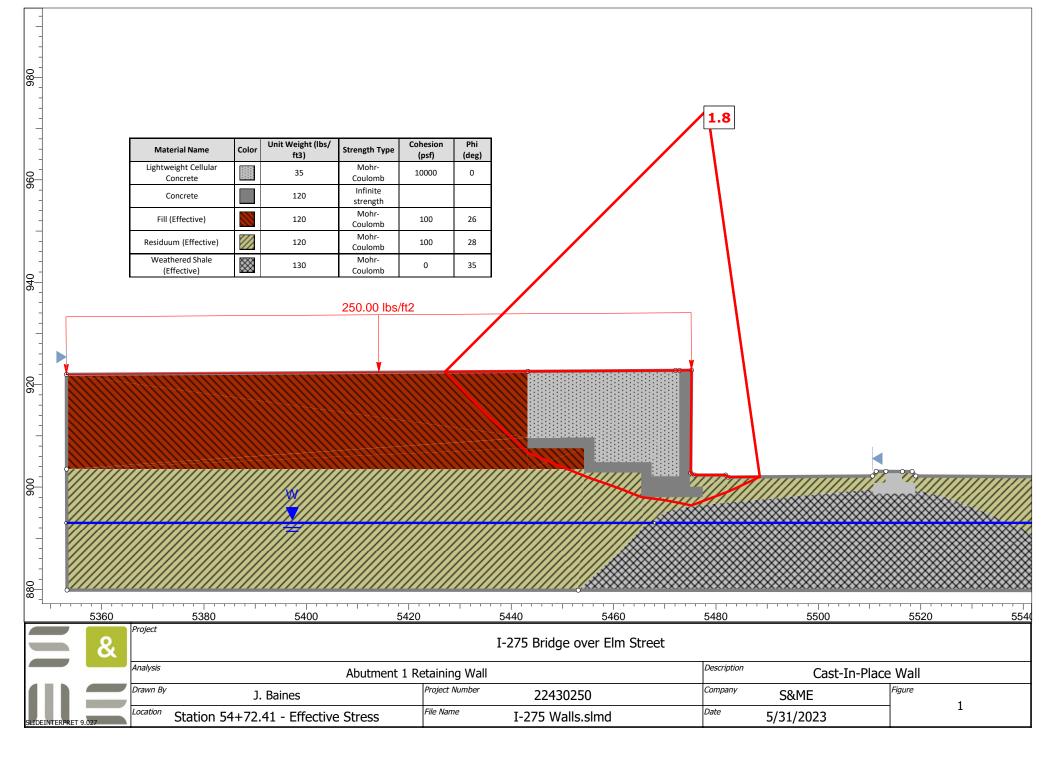
PARTICLE SIZE ANALYSIS OF SOIL

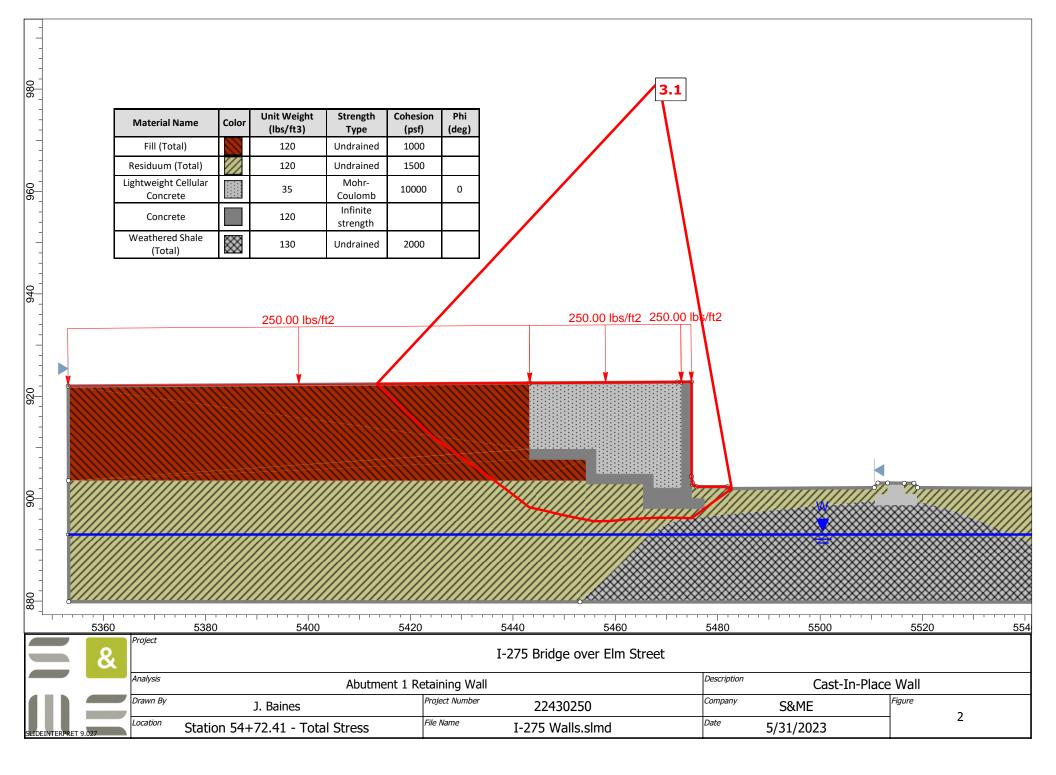
Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

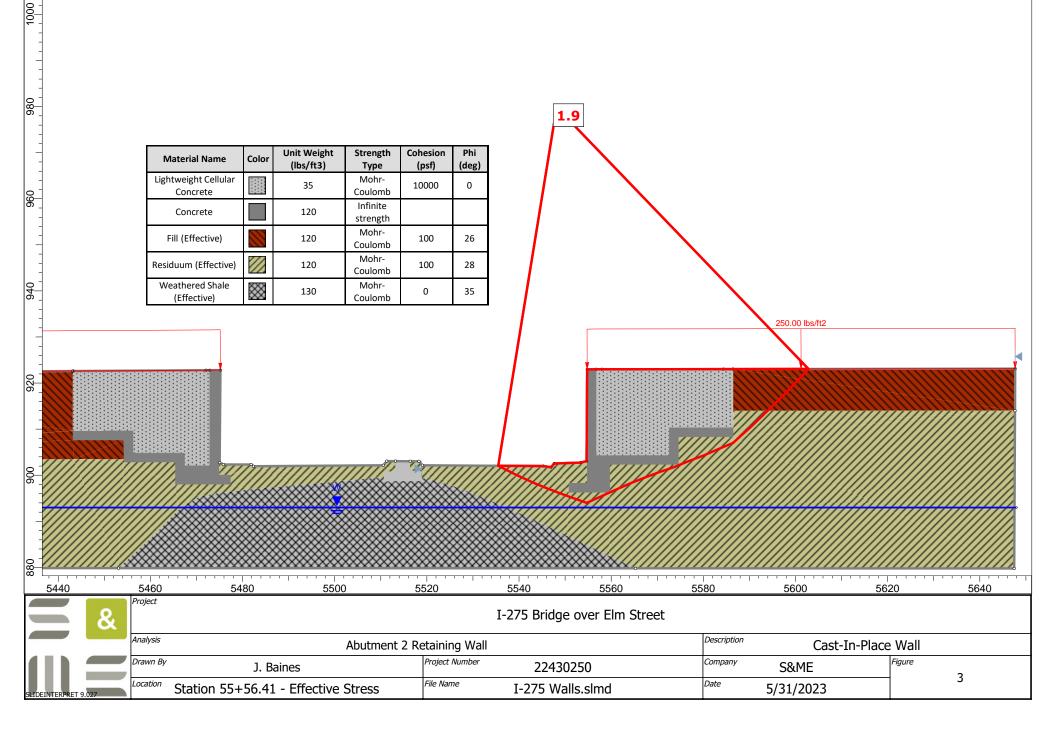
	S&IVIE, Ir	ic Knoxville:	141310	opside Re	oad, Louisvi	lle, TN 37777		
&ME Project #:	22430250					Report Date)/2023
oject Name:	I-275 Over El	m Street				Test Date(s)	1/31	1/2023
ient Name:	HDR							
ddress:		Commons Way,			d, TN			
imple ID:	B-11	S	ample #:	SS-08		Sample		2/19/22
ocation:	Boreholes					D		28.50 ft
mple Description:		CLAY WITH G	-	-				A-7-6
1.5"	1" 3/4" 1/2" 3/8"	#4 #10	#20 #	#40 #60 • •	#140 #200			
							++++	
90%								+
80%			┿╋┿┿┿	• •				
							++++-	
70%								+
80 E 60%								
60%								<u> </u>
50%								+
3 40%								
30%								\searrow
20%								
20 %								
10%								
0%								+
100	10	• •	1	•	0.1	0.01	•	0.001
		I	Particle S	Size (mm	I)			
				1		0.425		75 (#20
Gravel	< 75 r	nm and > 2.00 mm	n (#10)		Fine Sand Silt		<u>mm and > 0.07</u>).075 and > 0.0	
Coarse Sand		nm and > 0.425 m			Clay		< 0.002 mr	
Mavingung Dart	tiala Cizar	2/1 :=		Crava	I. 14 E	0/	Cilt	46.4%
Maximum Part		3/4 in	т	Gravel otal Sand			Silt	
Silt & Clay (% Passi	5	79.2% 2.650		e Conten			Clay	32.8%
Assumed Specif	quid Limit	69		astic Limi			stic Index	38
	arse Sand:	4.2%	Plo		נ גו		ine Sand:	2.1%
scription of Sand and Gra		4.2 % nded □ Ang	ular 🗵	Hard 8	ک Durable	r ⊠ Soft □	Weathered	
echanical Stirring Apparat		spersion Period:	1 min.		ing Agent:	Sodium Hexametap		40 g./ Lite
ferences / Comments /		AASHTO T 88, 1			9.95.0			
· · · · · · · · · · · · · · · · · · ·		,-	/	_				
		· · ·	-					

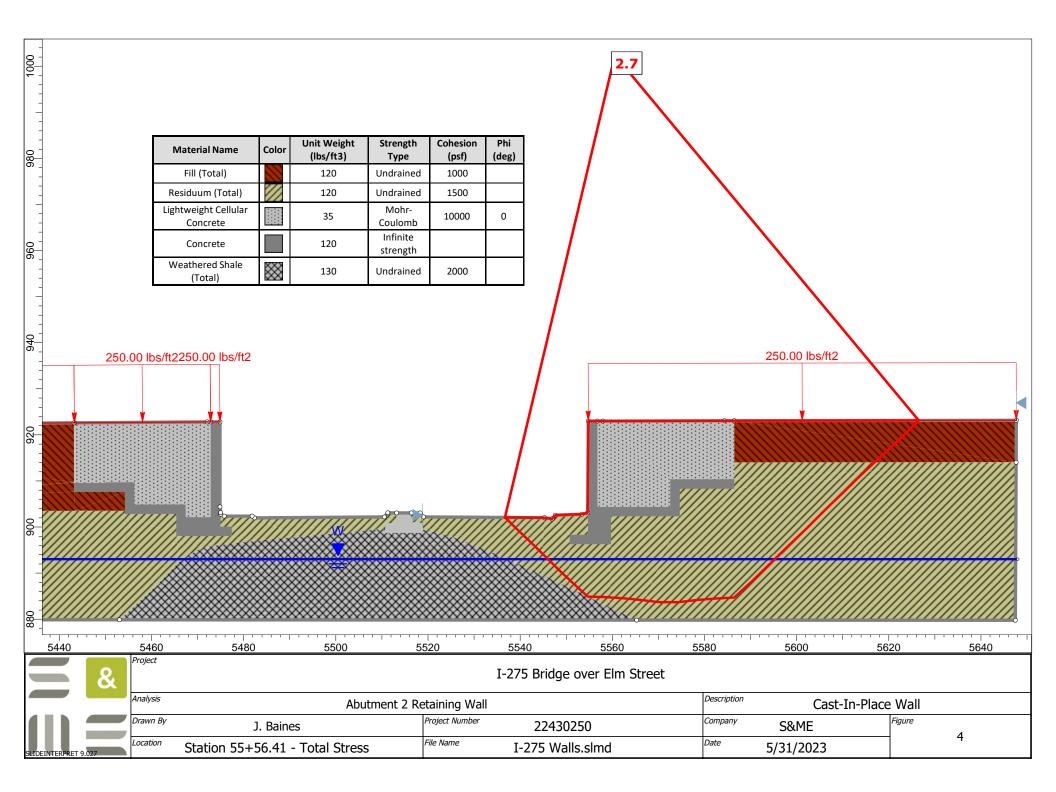
3201 Spring Forest Road Raleigh, NC. 27616 T 88 GS w Hydro (B-11, SS-08, 28.50 ft).xlsx Page 1 of 1 Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX


Quality ,	Assurance	ASTM D	4318		AASHTO	т 89 [× AA	SHTO T 90				
		S&N	1E, In	c Kno>	ville: 14	13 Topsic	le Road, I	ouisville,	TN 3777	7		
Project	#:	22430250							Report	Date:	2/10/2	.023
Project		I-275 Over El	m Str	eet					Test Da	ate(s)	1/28/2	022
Client N	Name:	HDR										
Client A	Address:	120 Brentwo	od Co	ommons	Way, Suit	e 525, Bre	entwood,	TN	-			
Boring	#: B-1	1		Sam	ple #: SS-0)8		San	nple Date	: 12/19/20)22	
Log #:	43-	3763							Depth	: 28.50 ft		
Descrip	otion:	FAT	CLA	Y WITH (GRAVEL (C	H), brow	n					
	d Specificat		ME ID		Cal Date:		e and Spec	ification	SE	&ME ID #		Date:
	(0.01 g)		18435		2/18/2022		oving tool			16015		5/2022
LL Appa	iratus		18414		8/10/2022		40 Sieve			31697	9/16	5/2022
Oven Pan	#		12872	<u></u>	7/21/2022		d Limit			ſ	Plastic Lim	it
, an		Tar	e #:	9	A3	A5				B5		
Α	Tare Wei			15.36	15.83	15.74				15.87		
В		Weight + A		29.29	31.76	32.86				23.36		
С		Veight + A		23.84	25.23	25.51				21.57		1
D	-	eight (B-C)		5.45	6.53	7.35			1	1.79		1
E		Neight (C-A)		8.48	9.40	9.77				5.70		1
F		re (D/E)*100		64.3%	69.5%	75.2%				31.4%		1
N	# OF DR	OPS		33	25	16				Moisture C	ontents de	termined by
LL	LL	= F * FACTOR								A	ASHTO T 2	65
Ave.		Average					-				31.4%	
	80.0 T									One Point I	Liquid Lin	nit
	78.0								N	Factor	N	Factor
	76.0								20 21	0.974 0.979	26 27	1.005
	74.0	— \							21	0.979	27	1.009 1.014
E I		-		_					23	0.99	29	1.014
Ŭ	72.0		$\overline{\mathbf{N}}$						24	0.995	30	1.022
	70.0			•					25	1.000		
9	68.0									NP, Non-P	lastic	
N 9	66.0									Liquid L	imit	69
	64.0									Plastic L	imit	31
	62.0									Plastic Ir		38
	60.0 							100		Group Syn		СН
			0	25 30	35 40	# of	Drops	100		Aultipoint N		\checkmark
		4.84ln(x) + 116		_					(Dne-point N	/lethod	
	reparation	Dry Pre			Air Dri			• -				
Notes /	Deviations ,	/ References:	Gro	up symb	ool is for r	ninus No	o. 40 por	tion only	•			


AASHTO T90: Determining the Plastic Lin	nit & Plastic Index of Soils	AASHTO T89: Determinir	ng the Liquid Limit of Soils						
Kim Gonzalez Technician Name	<u>1/29/2023</u> Date	Lindsey Deskins Technical Responsibility	<u>2/10/2023</u> Date						
This report shall	This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.								


3201 Spring Forest Road Raleigh, NC. 27616 AASHTO T89-T90 (B-11, SS-08, 28.50 ft) .xlsx Page 1 of 1


Appendix IV

Global Stability Analysis

Appendix V

Important Information about Your Geotechnical Engineering Report

Important Information About Your Geotechnical Engineering Report

Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.

Geotechnical Findings Are Professional Opinions

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

Scope of Geotechnical Services

Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

Services Are Performed for Specific Projects

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project. Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.

Geo-Environmental Issues

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

Geotechnical Recommendations Are Not Final

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.